Abstract
Hyperspectral images (HSIs) record scenes at different wavelength channels, providing detailed spatial and spectral information. How to storage and process this high-dimensional data plays a vital role in many practical applications, where classification technologies have emerged as excellent processing tools. However, their high computational complexity and energy requirements bring some challenges. Adopting low-power consumption architectures and deep learning (DL) approaches has to provide acceptable computing capabilities without reducing accuracy demand. However, most DL architectures employ single-precision (FP32) to train models, and some big DL architectures will have a limitation on memory and computation resources. This can negatively affect the network learning process. This letter leads these challenges by using mixed precision into DL architectures for HSI classification to speed up the training process and reduce the memory consumption/access. Proposed models are evaluated on four widely used data sets. Also, low and high-power consumption devices are compared, considering NVIDIA Jetson Xavier and Titan RTX GPUs, to evaluate the proposal viability in on-board processing devices. Obtained results demonstrate the efficiency and effectiveness of these models within HSI classification task for both devices. Source codes: https://github.com/mhaut/CNN-MP-HSI.
This is a preview of subscription content, access via your institution.



References
- 1.
Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J (2013) Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag 1(2):6–36
- 2.
Fang B, Li Y, Zhang H, Chan JCW (2020) Collaborative learning of lightweight convolutional neural network and deep clustering for hyperspectral image semi-supervised classification with limited training samples. ISPRS J Photogram Remote Sens 161:164–178. https://doi.org/10.1016/j.isprsjprs.2020.01.015
- 3.
Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M et al (1998) Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris). Remote Sens Environ 65(3):227–248
- 4.
Haut JM, Alcolea A, Paoletti ME, Plaza J, Resano J, Plaza A (2020) Gpu-friendly neural networks for remote sensing scene classification. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2020.3019378
- 5.
Haut JM, Bernabé S, Paoletti ME, Fernandez-Beltran R, Plaza A, Plaza J (2018) Low-high-power consumption architectures for deep-learning models applied to hyperspectral image classification. IEEE Geosci Remote Sens Lett 16(5):776–780
- 6.
Haut JM, Paoletti M, Plaza J, Plaza A (2017) Cloud implementation of the k-means algorithm for hyperspectral image analysis. J Supercomput 73(1):514–529
- 7.
Haut JM, Paoletti ME, Plaza J, Li J, Plaza A (2018) Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach. IEEE Trans Geosci Remote Sens 56(11):6440–6461
- 8.
Haut JM, Paoletti ME, Plaza J, Plaza A, Li J (2019) Hyperspectral image classification using random occlusion data augmentation. IEEE Geosci Remote Sens Lett 16(11):1751–1755
- 9.
Jia X, Song S, He W, Wang Y, Rong H, Zhou F, Xie L, Guo Z, Yang Y, Yu L et al (2018) Highly scalable deep learning training system with mixed-precision: training imagenet in four minutes. arXiv preprint arXiv:1807.11205
- 10.
Jia Z, Maggioni M, Smith J, Scarpazza DP (2019) Dissecting the nvidia turing t4 gpu via microbenchmarking. arXiv preprint arXiv:1903.07486
- 11.
Kim D, Kwon Y, Liu P, Kim IL, Perry DM, Zhang X, Rodriguez-Rivera G (2016) Apex: automatic programming assignment error explanation. ACM SIGPLAN Notices 51(10):311–327
- 12.
Kunkel B, Blechinger F, Lutz R, Doerffer R, Van der Piepen H, Schroder M (1988) Rosis (reflective optics system imaging spectrometer)-a candidate instrument for polar platform missions. In: Optoelectronic technologies for remote sensing from space, vol 868. International Society for Optics and Photonics, pp 134–141
- 13.
Lanaras C, Baltsavias E, Schindler K (2015) Hyperspectral super-resolution by coupled spectral unmixing. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3586–3594
- 14.
Li P, Han L, Tao X, Zhang X, Grecos C, Plaza A, Ren P (2020) Hashing nets for hashing: a quantized deep learning to hash framework for remote sensing image retrieval. IEEE Trans Geosci Remote Sens 58(10):7331–7345. https://doi.org/10.1109/TGRS.2020.2981997
- 15.
Lofqvist M, Cano J (2020) Accelerating deep learning applications in space. In: The 34th Annual Small Satellite Conference
- 16.
Lu J, Lu S, Wang Z, Fang C, Lin J, Wang Z, Du L (2019) Training deep neural networks using posit number system. In: 32nd IEEE International System-on-Chip Conference (SOCC), pp 62–67. https://doi.org/10.1109/SOCC46988.2019.1570558530
- 17.
Micikevicius P, Narang S, Alben J, Diamos G, Elsen E, Garcia D, Ginsburg B, Houston M, Kuchaiev O, Venkatesh G, Wu H (2018) Mixed precision training. In: International Conference on Learning Representations
- 18.
Paoletti M, Haut J, Plaza J, Plaza A (2018) A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J Photogramm Remote Sens 145:120–147
- 19.
Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza A, Li J, Pla F (2018) Capsule networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(4):2145–2160
- 20.
Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza AJ, Pla F (2018) Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(2):740–754
- 21.
Paoletti ME, Haut JM, Sidonio N, Plaza J, Plaza A (2021) Ghostnet for hyperspectral image classification. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2021.3050257
- 22.
Paoletti ME, Haut JM, Tao X, Plaza J, Plaza A (2020) Flop-reduction through memory allocations within cnn for hyperspectral image classification. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.3024730
- 23.
Roy SK, Chatterjee S, Bhattacharyya S, Chaudhuri BB, Platoš J (2020) Lightweight spectral-spatial squeeze-and- excitation residual bag-of-features learning for hyperspectral classification. IEEE Trans Geosci Remote Sens 58(8):5277–5290. https://doi.org/10.1109/TGRS.2019.2961681
- 24.
Tao X, Cui T, Ren P (2019) Cofactor-based efficient endmember extraction for green algae area estimation. IEEE Geosci Remote Sens Lett 16(6):849–853
- 25.
Yu J, Huang T (2019) Autoslim: towards one-shot architecture search for channel numbers. arXiv preprint arXiv:1903.11728
- 26.
Yue J, Zhao W, Mao S, Liu H (2015) Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens Lett 6(6):468–477
Acknowledgements
Supported by FEDER and Junta de Extremadura (GR18060).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Paoletti, M.E., Tao, X., Haut, J.M. et al. Deep mixed precision for hyperspectral image classification. J Supercomput (2021). https://doi.org/10.1007/s11227-021-03638-2
Accepted:
Published:
Keywords
- Hyperspectral image
- Deeplearning
- Mixed precision