A solution to dynamic green vehicle routing problems with time windows using spiking neural P systems with modified rules and learning

Abstract

Dynamic routing problems involve electronic decision making, which compromises reactivity with the quality of decision making. The time for seeking better decisions comes at the price of a lower reactivity to changes in inputs. This factor is especially important in situations where consumers are calling for a service and a good decision needs to be made as quickly as possible. There are two approaches in solving dynamic vehicle routing (DVRP): to run a state solver every time new requests come in, to construct an initial solution and then to update it each time new information comes. The latter is more commonly used and more flexible. Also, the environment is badly affected by factors like CO2 emissions; noise; etc. A variant of VRP called green VRP (GVRP) has been formulated in this context. The solution strategies for GVRP are developed to help organizations with alternative fuel-powered vehicles to resolve challenges that arise in conjunction with limited refueling facilities as a result of restricted vehicle driving range. Here, the authors propose a spiking neural P system (SN P)-based model with modified rules and learning in association with firefly optimization (FA) to solve the combined version of GVRP and D VRP with time windows, called DGVRPTW. The SN P system proposed here is a multilayer neural system with embedded potentials and learning facilities which uses the rectified linear unit (reLu) as activation functions. The proposed SN P system is used for geo-location clustering, and the firefly algorithm (FA) is used for route optimization. The proposed SN P system can do predictions accurately when a new customer enters the scenario. The scheme has been tested on medium as well as large-scale instances and analyzed different performance measures such as nature of convergence, utilization rate, solution improvement percentage and dynamic measures. Having applications in image classifications, optimization problems, etc., the proposed system is worthy of future study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Popovici E, Bucci A, Wiegand RP, de Jong ED (2012) Handbook of natural computing. Springer, Berlin

    Google Scholar 

  2. 2.

    Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharma Biomed Anal 22:717–727. https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  3. 3.

    Zhang Y, Agarwal P, Bhatnagar V, Balochian S, Yan J (2013) Swarm intelligence and its applications. Sci World J 201:3. https://doi.org/10.1155/2013/528069

    Article  Google Scholar 

  4. 4.

    Bartz-Beielstein T, Branke J, Mehnen J, Mersmann O (2014) Evolutionary algorithms. Wiley Interdiscip Rev Data Min Knowl Discov. https://doi.org/10.1002/widm.1124

    Article  Google Scholar 

  5. 5.

    Noson Y (2007) An introduction to quantum computing. Springer, Dordrecht

    Google Scholar 

  6. 6.

    Păun G (2010) A quick introduction to membrane computing. J Logic Algebra Program 79(6):291–294. https://doi.org/10.1016/j.jlap.2010.04.002

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287:73–100. https://doi.org/10.1016/S0304-3975(02)00136-6

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Song B, Pan L, Pérez-Jiménez MJ (2016) Cell-like p systems with channel states and symport/antiport rules. IEEE Trans Nanobiosci 15(6):555–566

    Article  Google Scholar 

  9. 9.

    doi: https://doi.org/10.1109/TNB.2016.2594192

  10. 10.

    Pan L, Pérez-Jiménez MJ (2010) Computational complexity of tissue-like P systems. J Complex 26(3):296–315. https://doi.org/10.1016/j.jco.2010.03.001

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Wang X et al (2016) On the computational power of spiking neural P systems with self-organization. Sci Rep 6:27624. https://doi.org/10.1038/srep27624

    Article  Google Scholar 

  12. 12.

    Zhao Y, Liu X, Wang W (2016) Spiking neural P systems with neuron division and dissolution. PLoS ONE 11:e0162882. https://doi.org/10.1371/journal.pone.0162882

    Article  Google Scholar 

  13. 13.

    Pan L, Păun G, Pérez-Jiménez M (2011) Spiking neural P systems with neuron division and budding. Sci China Inf Sci 54:1596–1607. https://doi.org/10.1007/s11432-011-4303-y

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Song Jun Wang X, Ning Zhang Sun HPG, Fan Yang T (2018) Spiking neural P systems with multiple channels and anti-spikes. Biosyst Vol 169–170:13–19. https://doi.org/10.1016/j.biosystems.2018.05.004

    Article  Google Scholar 

  15. 15.

    Chen H, Freund R, Ionescu M, Paun G, Pérez-Jiménez M (2007) On string languages generated by spiking neural P systems. Fundam Inform 75:141–162

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Zhang G, Rong H, Neri F, Pérez-Jiménez M (2014) An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int J Neural Syst 24:1440006. https://doi.org/10.1142/S0129065714400061

    Article  Google Scholar 

  17. 17.

    Díaz-Pernil D, Gutiérrez-Naranjo M (2017) Semantics of deductive databases with spiking neural P systems. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.07.007

    Article  Google Scholar 

  18. 18.

    Diaz C, Frias T, Sanchez G, Perez-Meana H, Toscano K, Duchen G (2017) A novel parallel multiplier using spiking neural P systems with dendritic delays. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.02.009

    Article  Google Scholar 

  19. 19.

    Tingfang Wu, Wang Y, Jiang S, Yansen Su, Shi X (2018) Spiking neural P systems with rules on synapses and anti-spikes. Theor Comput Sci 724:13–27. https://doi.org/10.1016/j.tcs.2017.12.015

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12(4):568–581

    Article  Google Scholar 

  21. 21.

    Jean-François C, Guy D, Jacques D, François S (2002) VRP with time windows. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  22. 22.

    Larsen A (2000) The dynamic vehicle routing problem. Technical University of Denmark, Kgs. Lyngby, Denmark

    Google Scholar 

  23. 23.

    Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res Part E Logist Transp Rev 48(1):100–114. https://doi.org/10.1016/j.tre.2011.08.001

    Article  Google Scholar 

  24. 24.

    Arora S, Singh S (2013) The firefly optimization algorithm: convergence analysis and parameter selection. Int J Comput Appl 69(3):10

    Google Scholar 

  25. 25.

    Gandomi A, Yang X, Alavi A (2011) Mixed variable structural optimization using a firefly algorithm. Comput Struct 89(23):2325–2336

    Article  Google Scholar 

  26. 26.

    Gao M, He X, Luo D, Jiang J, Teng Q (2013) Object tracking using firefly algorithm. IET Comput Vision 7(4):227–237

    Article  Google Scholar 

  27. 27.

    Crainic TG, Gendreau M, Potvin J-Y (2009) Intelligent freight-transportation systems: assessment and the contribution of operations research. Transp Res Part C Emerg Technol 17(6):541–557. https://doi.org/10.1016/j.trc.2008.07.002

    Article  Google Scholar 

  28. 28.

    Attanasio A, Bregman J, Ghiani G, Manni E (2007) Real-time fleet management at Ecourier Ltd. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management of operations research/computer science interfaces. Springer, Boston

    Google Scholar 

  29. 29.

    Caramia M, Italiano G, Oriolo G, Pacifici A, Perugia A (2002) Routing a fleet of vehicles for dynamic combined pick-up and deliveries services. In: Proceedings of the symposium on operation research 2001, Duisburg, Germany

  30. 30.

    Beaudry A, Laporte G, Melo T, Nickel S (2010) Dynamic transportation of patients in hospitals. OR Spectr 32:77–107. https://doi.org/10.1007/s00291-008-0135-6

    Article  MATH  Google Scholar 

  31. 31.

    Kergosien Y, Lenté C, Piton D, Billaut J-C (2011) A tabu search heuristic for the dynamic transportation of patients between care units. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2011.04.033 (In Press)

    Article  MATH  Google Scholar 

  32. 32.

    Romero M, Sheremetov L, Soriano A (2007) A genetic algorithm for the pickup and delivery problem: an application to the helicopter offshore transportation. Theoretical advances and applications of fuzzy logic and soft computing, advances in soft computing. Springer, Berlin/Heidelberg, pp 435–444

    Google Scholar 

  33. 33.

    Taniguchi E, Thompson R (2002) Modeling city logistics. Transp Res Rec J Transpo Res Board 1790(1):45–51

    Article  Google Scholar 

  34. 34.

    Barcelo J, Grzybowska H, Pardo S (2007) Vehicle routing and scheduling models, simulation and city logistics. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management, operations research/computer science interfaces, vol 38. Springer, Boston, pp 163–195

    Google Scholar 

  35. 35.

    Zeimpekis V, Minis I, Mamassis K, Giaglis GM (2007) Dynamic management of a delayed delivery vehicle in a city logistics environment. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management, operations research/computer science interfaces series. Springer, Boston, US, pp 197–217

    Google Scholar 

  36. 36.

    Gendreau M, Guertin F, Potvin J-Y, Séguin R (2006) Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-up sand deliveries. Transp Res Part C Emerg Technol 14(3):157–174. https://doi.org/10.1016/j.trc.2006.03.002

    Article  Google Scholar 

  37. 37.

    Ghiani G, Manni E, Quaranta A, Triki C (2009) Anticipatory algorithms for same-day courier dispatching. Transp Res Part E Logist Transp Rev 45(1):96–106. https://doi.org/10.1016/j.tre.2008.08.003

    Article  Google Scholar 

  38. 38.

    Bieding T, Görtz S, Klose A (2009) On line routing per mobile phone a case on subsequent deliveries of newspapers. In: Nunen JA, Speranza MG, Bertazzi L (eds) Innovations in distribution logistics, lecture notes in economics and mathematical systems, vol 619. Springer, Berlin, Heidelberg, pp 29–51

    Google Scholar 

  39. 39.

    Campbell A, Savelsbergh M (2005) Decision support for consumer direct grocery initiatives. Transp Sci 39(3):313–327

    Article  Google Scholar 

  40. 40.

    Ferrucci F, Bock S, Gendreau M (2011) Real-time distribution of perishable goods using past request information to anticipate future requests. Oper Res 34:84

    Google Scholar 

  41. 41.

    Azi N, Gendreau M, Potvin JY (2011) A dynamic vehicle routing problem with multiple delivery routes. Annal Oper Res 13:103–112 (In-press)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Balev S, Guinand F, Lesauvage G, Olivier D (2009) Dynamical handling of straddle carriers activities on a container terminal in uncertain environment—a swarm intelligence approach. In: Proceedings of the 2009 international conference on complex systems and applications (ICCSA 2009), University of Le Havre, Le Havre, France

  43. 43.

    Berbeglia G, Cordeau J-F, Laporte G (2010) Dynamic pickup and delivery problems. Eur J Oper Res 202(1):8–15. https://doi.org/10.1016/j.ejor.2009.04.024

    Article  MATH  Google Scholar 

  44. 44.

    Fiegl C, Pontow C (2009) Online scheduling of pick-up and delivery tasks in hospitals. J Biomed Inform 42(4):624–632. https://doi.org/10.1016/j.jbi.2009.02.003

    Article  Google Scholar 

  45. 45.

    Larsen A, Madsen OBG, Solomon MM (2004) The a priori dynamic traveling salesman problem with time windows. Transp Sci 38(4):459–472. https://doi.org/10.1287/trsc.1030.0070

    Article  Google Scholar 

  46. 46.

    Tagmouti M, Gendreau M, Potvin J-Y (2011) A dynamic capacitated arc routing problem with time-dependent service costs. Transp Res Part C Emerg Technol 19(1):20–28. https://doi.org/10.1016/j.trc.2010.02.003

    Article  MATH  Google Scholar 

  47. 47.

    Lin C, Choy KL, Ho GTS, Chung SH, Lam HY (2014) Survey of green vehicle routing problem: past and future trends. Expert Syst Appl 41(4):1118–1138. https://doi.org/10.1016/j.eswa.2013.07.107

    Article  Google Scholar 

  48. 48.

    Erdoäÿan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res Part E Logist Transp Rev 48(1):100–114

    Article  Google Scholar 

  49. 49.

    Kara I, Kara BY, Yetis MK (2007) Energy minimizing vehicle routing problem. In: International conference on combinatorial optimization and applications (pp. 62–71). Springer, Berlin, Heidelberg

  50. 50.

    Apaydin O, Gonullu MT (2008) Emission control with route optimization in solid waste collection process: a case study. Sadhana 33(2):71–82

    Article  Google Scholar 

  51. 51.

    Hsueh C-F (2017) A vehicle routing problem with consideration of green transportation. J Manag Sustain 7:89. https://doi.org/10.5539/jms.v7n4p89

    Article  Google Scholar 

  52. 52.

    Afshar-Bakeshloo M, Mehrabi A, Safari H et al (2016) A green vehicle routing problem with customer satisfaction criteria. J Ind Eng Int 12:529–544. https://doi.org/10.1007/s40092-016-0163-9

    Article  Google Scholar 

  53. 53.

    Yiyong X, Abdullah K (2015) Green vehicle routing problem with time varying traffic congestion. Transp Res Part E Logist Transp Rev. https://doi.org/10.1287/ics.2015.0010

    Article  Google Scholar 

  54. 54.

    Abdoli B, MirHassani SA, Hooshmand F (2019) On different formulations of green vehicle routing problem. J Inf Optim Sci 40(4):883–903. https://doi.org/10.1080/02522667.2018.1460137

    MathSciNet  Article  Google Scholar 

  55. 55.

    Normasari NME, Yu VF, Bachtiyar C, Sukoyo A (2019) A simulated annealing heuristic for the capacitated green vehicle routing problem. Math Probl Eng 2019:18. https://doi.org/10.1155/2019/2358258

    Article  MATH  Google Scholar 

  56. 56.

    Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and recharging stations. Transp Sci 48:500–520. https://doi.org/10.1287/trsc.2013.0490

    Article  Google Scholar 

  57. 57.

    Johari N, Zain A, Mustaffa N, Udin A (2013) Firefly algorithm for optimization problem. Appl Mech Mater. https://doi.org/10.4028/www.scientific.net/AMM.421.512

    Article  Google Scholar 

  58. 58.

    Turkensteen M (2017) The accuracy of carbon emission and fuel consumption computations in green vehicle routing. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2017.04.005

    Article  MATH  Google Scholar 

  59. 59.

    Qi F, Liu M (2018) Optimization Spiking Neural P System for Solving TSP. In: Gu X, Liu G, Li B (eds) Machine learning and intelligent communications. MLICOM 2017. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol 227. Springer, Cham

    Google Scholar 

  60. 60.

    Syakur MA, Khotimah BK, Rochman EMS, Satoto BD (2018) Integration K-means clustering method and elbow method for identification of the best customer profile cluster. In: IOP conference series: materials science and engineering, 336(1): 012017 IOP Publishing

  61. 61.

    Ramachandran Pillai R, Arock M (2019) An adaptive spiking neural P system for solving vehicle routing problems. Arab J Sci Eng 45:1–17

    Google Scholar 

  62. 62.

    Gajpal Y, Abad P (2009) An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup. Comput Oper Res 36(12):3215–3223

    Article  Google Scholar 

  63. 63.

    Zhang H, Zhang Q, Ma L, Zhang Z, Liu Y (2019) A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows. Inf Sci 490:166–190. https://doi.org/10.1016/j.ins.2019.03.070

    MathSciNet  Article  MATH  Google Scholar 

  64. 64.

    Kao Y, Chen MH, Huang YT (2012) A hybrid algorithm based on ACO and PSO for capacitated vehicle routing problems. Math Prob Eng 2012:53

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Kalayci CB, Kaya C (2016) An ant colony system empowered variable neighborhood search algorithm for the vehicle routing problem with simultaneous pickup and delivery. Expert Syst Appl 66:163–175. https://doi.org/10.1016/j.eswa.2016.09.017

    Article  Google Scholar 

  66. 66.

    Xu H, Pu P, Duan F (2018) Dynamic vehicle routing problems with enhanced ant colony optimization. Discret Dyn Nat Soc. https://doi.org/10.1155/2018/1295485

    Article  MATH  Google Scholar 

  67. 67.

    Stenger A, Vigo D, Enz S, Schwind M (2013) An adaptive variable neighborhood search algorithm for a vehicle routing problem arising in small package shipping. Transp Sci 47(1):64–80

    Article  Google Scholar 

  68. 68.

    Elhassania M, Jaouad B, Ahmed EA (2014) Solving the dynamic vehicle routing problem using genetic algorithms. In: International conference on logistics operations management, Rabat, pp. 62–69

  69. 69.

    El Bouzekri El Idrissi E, Elhilali Alaoui A (2014) Evolutionary algorithm for the bi-objective green vehicle routing problem. Int J Sci Eng Res 5(9):70

    Google Scholar 

  70. 70.

    RamachandranPillai R, Arock M (2020) Spiking neural firefly optimization scheme for the capacitated dynamic vehicle routing problem with time windows. Neural Comput and Applic. https://doi.org/10.1007/s00521-020-04983-8

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Resmi Ramachandranpillai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramachandranpillai, R., Arock, M. A solution to dynamic green vehicle routing problems with time windows using spiking neural P systems with modified rules and learning. J Supercomput (2021). https://doi.org/10.1007/s11227-021-03635-5

Download citation

Keywords

  • Spiking neural P systems
  • Dynamic green vehicle routing problems
  • Rectified linear unit
  • Firefly algorithm