Layered ontology-based multi-sourced information integration for situation awareness


Data and information produced in network-centric environments are large and heterogeneous. As a solution to this challenge, ontology-based situation awareness (SA) is gaining attention because ontologies can contribute to the integration of heterogeneous data and information produced from different sources and can enhance knowledge formalization. In this study, we propose a novel method for enhancing ontology-based SA by integrating ontology and linked open data (LOD) called a multi-layered SA ontology and the relations between events in the layer. In addition, we described the characteristics and roles of each layer. Finally, we developed a framework to perform SA rapidly and accurately by acquiring and integrating information from the ontology and LOD based on the multi-layered SA ontology. We conducted three experiments to verify the effectiveness of the proposed framework. The results show that the performance of the SA of our framework is comparable to that of domain experts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Chmielewski M, Kukiełka M, Frąszczak D, and Bugajewski D (2017) Military and crisis management decision support tools for situation awareness development using sensor data fusion. In: International Conference on Information Systems Architecture and Technology. Springer: Cham, pp 189–199

  2. 2.

    Fenza G, Furno D, Loia V, & Veniero M (2010) Agent-based cognitive approach to airport security situation awareness. In: 2010 International Conference on Complex, Intelligent and Software Intensive Systems. IEEE, pp 1057–1062

  3. 3.

    Maran V, Machado A, Machado GM, Augustin I, de Oliveira JPM (2018) Domain content querying using ontology-based context-awareness in information systems. Data Knowl Eng 115:152–173

    Article  Google Scholar 

  4. 4.

    Subramaniyaswamy V, Manogaran G, Logesh R, Vijayakumar V, Chilamkurti N, Malathi D, Senthilselvan N (2019) An ontology-driven personalized food recommendation in IoT-based healthcare system. J Supercomput 75(6):3184–3216

    Article  Google Scholar 

  5. 5.

    Kokar MM, Matheus CJ, Baclawski K (2009) Ontology-based situation awareness. Inf Fusion 10(1):83–98

    Article  Google Scholar 

  6. 6.

    Euzenat J, Shvaiko P (2007) Ontology matching, vol 1. Springer: Berlin

    Google Scholar 

  7. 7.

    Albagli S, Ben-Eliyahu-Zohary R, Shimony SE (2012) Markov network based ontology matching. J Comput Syst Sci 78(1):105–118

    MathSciNet  Article  Google Scholar 

  8. 8.

    Doerr M, Hunter J, and Lagoze C (2003) Towards a core ontology for information integration. J Digital Inf 4(1)

  9. 9.

    Doran P, Tamma V, and Iannone L (2007) Ontology module extraction for ontology reuse: an ontology engineering perspective. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, ACM, pp 61–70

  10. 10.

    Gao M, Chen F, and Wang R (2018) Improving medical ontology based on word embedding. In: Proceedings of the 2018 6th International Conference on Bioinformatics and Computational Biology. ACM, pp 121–127

  11. 11.

    Wang K (2015) Research on the theory and methods for similarity calculation of rough formal concept in missing-value context. In: Proceedings of the 2015 joint international mechanical, electronic and information technology conference.

  12. 12.

    Baumgartner N et al. (2010) BeAware!—situation awareness, the ontology-driven way. Data Knowl Eng 69(11):1181–1193

    Article  Google Scholar 

  13. 13.

    Kong J, Kim K, Park G, and Sohn M (2018) design of ontology framework for knowledge representation in command and control. In: 6th International Conference on Big Data Applications and Services, pp 157–164

  14. 14.

    Kabilan V (2007) Ontology for information systems (04IS) design methodology: conceptualizing, designing and representing domain ontologies (Doctoral dissertation, KTH)

  15. 15.

    Ra M, Yoo D, No S, Shin J, and Han C (2012) The mixed ontology building methodology using database information. In: Proceedings of the International Multiconference of Engineers and Computer Scientists (Vol. 1)

  16. 16.

    Smith B, Miettinen K, and Mandrick W (2009) The ontology of command and control (C2). State Univ Of New York At Buffalo National Center For Ontological Research

  17. 17.

    Smith B, Vizenor L, and Schoening J (2009) Universal core semantic layer. In: Ontology for the Intelligence Community, Proceedings of the Third OIC Conference, George Mason University, Fairfax, VA

  18. 18.

    Arp R, Smith B, Spear AD (2015) Building ontologies with basic formal ontology. Mit Press: Cambridge

    Google Scholar 

  19. 19.

    Gangemi A, Guarino N, Masolo C, Oltramari A, Schneider L (2002) Sweetening ontologies with DOLCE. In: International Conference on Knowledge Engineering and Knowledge Management. Springer, Berlin, Heidelberg, pp 166–181

  20. 20.

    Niles I, and Pease A (2001) Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems-volume 2001. ACM, pp 2–9

  21. 21.

    Deitz PH, Michaelis JR, Bray BE, and Kolodny MA (2016) The missions & means framework (MMF) ontology: matching military assets to mission objectives. In: Proceedings of the 2016 International C2 Research and Technology Symposium (ICCRTS 2016), London, UK

  22. 22.

    Matheus CJ, Kokar MM, Baclawski K (2003) A core ontology for situation awareness. In: Proceedings of the Sixth International Conference on Information Fusion, vol 1, pp 545–552

  23. 23.

    Morosoff P, Rudnicki R, Bryant J, Farrell R, and Smith B (2015) Joint doctrine ontology: a benchmark for military information systems interoperability

  24. 24.

    Li J, Tang J, Li Y, Luo Q (2009) RiMOM: a dynamic multistrategy ontology alignment framework. IEEE Trans Knowl Data Eng 21(8):1218–1232.

    Article  Google Scholar 

  25. 25.

    Kontchakov R, Wolter F, Zakharyaschev M (2010) Logic-based ontology comparison and module extraction, with an application to DL-Lite. Artif Intell 174(15):1093–1141

    MathSciNet  Article  Google Scholar 

  26. 26.

    Bhatt M, Flahive A, Wouters C, Rahayu W, Taniar D (2006) Move: a distributed framework for materialized ontology view extraction. Algorithmica 45(3):457–481

    Article  Google Scholar 

  27. 27.

    Kontchakov R, Pulina L, Sattler U, Schneider T, Selmer P, Wolter F, Zakharyaschev M (2009) Minimal module extraction from DL-Lite ontologies using QBF solvers. IJCAI 9:836–841

    Google Scholar 

  28. 28.

    Wouters C, Rajagopalapillai R, Dillon TS, and Rahayu W (2006) Ontology extraction using views for semantic web. In: Web Semantics and Ontology. IGI Global, pp 1–40

  29. 29.

    Lozano J, Carbonera J, Abel M, and Pimenta M (2014) Ontology view extraction: an approach based on ontological meta-properties. In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, pp 122–129

  30. 30.

    Doran P, Palmisano I, and Tamma VA (2008) SOMET: algorithm and tool for SPARQL based ontology module extraction. WoMO, 348

  31. 31.

    Nagy M, Vargas-Vera M, and Motta E (2007) Dssim-managing uncertainty on the semantic web

  32. 32.

    Noy NF, and Musen MA (2004) Specifying ontology views by traversal. In: International Semantic Web Conference. Springer: Berlin, Heidelberg, pp 713–725

  33. 33.

    d'Aquin M, Doran P, Motta E, and Tamma VA (2007) Towards a parametric ontology modularization framework based on graph transformation. WoMO, 315

  34. 34.

    d’Aquin M, Schlicht A, Stuckenschmidt H, and Sabou M (2007) Ontology modularization for knowledge selection: experiments and evaluations. In: International Conference on Database and Expert Systems Applications. Springer: Berlin, Heidelberg, pp 874–883

  35. 35.

    Seddiqui MH, Aono M (2009) An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Web Semant Sci Serv Agents World Wide Web 7(4):344–356

    Article  Google Scholar 

  36. 36.

    Rashevsky N (1955) Life, information theory, and topology. Bull Math Biophys 17(3):229–235

    MathSciNet  Article  Google Scholar 

  37. 37.

    Flahive A, Taniar D, Rahayu W (2013) Ontology as a Service (OaaS): a case for sub-ontology merging on the cloud. J Supercomput 65(1):185–216

    Article  Google Scholar 

  38. 38.

    Ardjani F, Bouchiha D, Malki M (2015) Ontology-alignment techniques: survey and analysis. Int J Mod Edu Comput Sci 7(11):67

    Article  Google Scholar 

  39. 39.

    Cruz IF, Antonelli FP, Stroe C (2009) Agreement maker: efficient matching for large real-world schemas and ontologies. Proceed VLDB Endow 2(2):1586–1589

    Article  Google Scholar 

  40. 40.

    Jean-Mary YR, Shironoshita EP, Kabuka MR (2009) Ontology matching with semantic verification. Web Semant Sci Serv Agents World Wide Web 7(3):235–251

    Article  Google Scholar 

  41. 41.

    Corrales JC, Grigori D, Bouzeghoub M, and Burbano JE (2008, March). Bematch: a platform for matchmaking service behavior models. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology. ACM, pp 695–699

  42. 42.

    Su W, Wang J, and Lochovsky F (2006). Holistic schema matching for web query interfaces. In: International Conference on Extending Database Technology. Springer, Berlin, Heidelberg, pp 77–94

  43. 43.

    Spiliopoulos V, Vouros G, Karkaletsis V (2010) On the discovery of subsumption relations for the alignment of ontologies. SSRN Electron J.

    Article  Google Scholar 

  44. 44.

    Shao C, Hu LM, Li JZ, Wang ZC, Chung T, Xia JB (2016) RiMOM-IM: a novel iterative framework for instance matching. J Comput Sci Technol 31(1):185–197

    MathSciNet  Article  Google Scholar 

  45. 45.

    Wimmer M, Seidl M, Brosch P, Kargl H, and Kappel G (2009) On realizing a framework for self-tuning mappings. In: International Conference on Objects, Components, Models and Patterns. Springer, Berlin, Heidelberg, pp 1–16

  46. 46.

    Khiat A, and Benaissa M (2014) AOT/AOTL results for OAEI 2014. In: OM, pp 113–119

  47. 47.

    Khiat A, and Benaissa M (2014) InsMT/InsMTL results for OAEI 2014 instance matching. In: OM,  pp 120–125

  48. 48.

    Miles A, Matthews B, Wilson M, and Brickley D (2005) SKOS core: simple knowledge organisation for the web. In: International Conference on Dublin Core and Metadata Applications, pp 3–10

  49. 49.

    de Souza LCC, and Pinheiro WA (2015) An approach to data correlation using JC3IEDM model. In: MILCOM 2015–2015 IEEE Military Communications Conference. IEEE, pp 1099–1102

Download references


This research was supported by C2 integrating and interfacing technologies laboratory of Agency for Defense Development (UD180014ED).

Author information



Corresponding author

Correspondence to Mye Sohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kong, J., Sohn, M. et al. Layered ontology-based multi-sourced information integration for situation awareness. J Supercomput (2021).

Download citation


  • Situation awareness
  • Ontology-based integration
  • Multi-sourced information integration
  • Linked open data