KDB: a fast update and high speed packet classifier in SDN


Packet classification is a fundamental function to support several services of software defined networking (SDN). Increasing complexity of the flow tables in SDN leads to challenges for packet classification on update and classification time. In this paper, we propose KDB, a hybrid decision tree classifier, to achieve fast update and high speed packet classification. Experimental results show that KDB is faster in update time compared with SmartSplit and PartitionSort, two state-of-the-art decision tree classifiers, and achieves comparable classification time. Compared with Tuple Search Space (TSS), a classifier used in Open vSwitch, KDB is faster in classification time and achieves comparable update time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.



  1. 1.

    McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74

    Article  Google Scholar 

  2. 2.

    Wang H, Qian C, Yu Y, Yang H, Lam SS, Wang H, Qian C, Yu Y, Yang H, Lam SS (2017) Practical network-wide packet behavior identification by ap classifier. IEEE/ACM Trans Netw 25(5):2886–2899

    Article  Google Scholar 

  3. 3.

    Li W, Li X, Li H, Xie G (2018) Cutsplit: a decision-tree combining cutting and splitting for scalable packet classification. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, pp 2645–2653

  4. 4.

    Hatami R, Bahramgiri H (2019) High-performance architecture for flow-table lookup in sdn on fpga. J upercomput 75(1):384–399

    Article  Google Scholar 

  5. 5.

    Hatami R, Bahramgiri H (2020) Fast sdn updates using tree-based architecture. Int J Commun Netw Distrib Syst 25(3):333–346

    Google Scholar 

  6. 6.

    Srinivasan V, Suri S, Varghese G (1999) Packet classification using tuple space search. ACM SIGCOMM Comput Commun Rev 29:135–146

    Article  Google Scholar 

  7. 7.

    He P, Xie G, Salamatian K, Mathy L (2014) Meta-algorithms for software-based packet classification. In: 2014 IEEE 22nd International Conference on Network Protocols (ICNP). IEEE, pp 308–319

  8. 8.

    Yingchareonthawornchai S, Daly J, Liu AX, Torng E (2018) A sorted-partitioning approach to fast and scalable dynamic packet classification. IEEE/ACM Trans Netw 26(4):1907–1920

    Article  Google Scholar 

  9. 9.

    Pfaff B, Pettit J, Koponen T, Jackson E, Zhou A, Rajahalme J, Gross J, Wang A, Stringer J, Shelar, et al. P (2015) The design and implementation of open vswitch. In: 12th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 15), pp 117–130

  10. 10.

    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517

    Article  Google Scholar 

  11. 11.

    Bayer R, McCreight EM (1972) Organization and maintenance of large ordered indices. Acta Inform 1:173–189

    Article  Google Scholar 

  12. 12.

    Lakshminarayanan K, Rangarajan A, Venkatachary S (2005) Algorithms for advanced packet classification with ternary cams. ACM SIGCOMM Comput Commun Rev 35(4):193–204

    Article  Google Scholar 

  13. 13.

    Meiners CR, Liu AX, Torng E (2007) Tcam razor: a systematic approach towards minimizing packet classifiers in tcams. In: 2007 IEEE International Conference on Network Protocols, pp 266–275

  14. 14.

    Gupta P, McKeown N (1999) Packet classification using hierarchical intelligent cuttings. In: Hot Interconnects VII, vol 40

  15. 15.

    Singh S, Baboescu F, Varghese G, Wang J (2003) Packet classification using multidimensional cutting. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. ACM, pp 213–224

  16. 16.

    Qi Y, Xu L, Yang B, Xue Y, Li J (2009) Packet classification algorithms: from theory to practice. In: INFOCOM 2009. IEEE, pp 648–656

  17. 17.

    Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT Press, Cambridge

    Google Scholar 

  18. 18.

    Taylor DE, Turner JS (2007) Classbench: a packet classification benchmark. IEEE/ACM Trans Netw 15(3):499–511

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hossein Bahramgiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatami, R., Bahramgiri, H. KDB: a fast update and high speed packet classifier in SDN. J Supercomput (2021). https://doi.org/10.1007/s11227-020-03598-z

Download citation


  • Packet classification
  • Software defined networking (SDN)
  • Decision tree