Abstract
The strength of many security protocols lies on the computational intractability of the integer factorization and discrete logarithm problems. Currently, the best-known techniques employed are number field sieve (NFS) family of algorithms. They come under the class of sub-exponential time algorithms. This class of algorithms comprises of multiple steps. The relation collection (sieving step) is one of the computationally costly and highly memory-dependent phase of these algorithms. This paper discusses various ways to improve the efficiency of the relation collection phase by using parallelization techniques. Experiments have been carried out by using function field sieve, which is one of the NFS family algorithms, to show the computation efficiency of parallelization techniques along with the suitable sieving techniques and the key parameters. The result of our basic implementation is compared with the parallelized version of it. The result analysis depicts that the relation collection phase can be improved by using parallelization techniques up to fourfold.
This is a preview of subscription content, access via your institution.


















References
- 1.
Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public key cryptosystems. Commun ACM 21:120–126
- 2.
Kleinjung T, Aoki K, Franke J, Lenstra AK, Thome E, Bos J, Gaudry P, Kruppa A, Montgomery PL, Osvik DA, Te Riele H, Timofeev A, Zimmermann P (2010) Factorization of a 768-bit RSA modulus. In: Rabin T (ed) Advances in cryptology: CRYPTO 2010, LNCS, vol 6223, Springer, pp 333–350
- 3.
Diffie W, Hellman ME (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654
- 4.
Barbulescu R, Bouvier C, Detrey J, Gaudry P, Jeljeli H, Thome E, Videau M, Zimmermann P (2014) Discrete logarithm in \(GF(2^{809})\) with FFS, PKC 2014, LNCS, vol 8383, Springer, pp 221–238
- 5.
https://prog.world/a-new-achievement-in-cryptography-factorization-of-a-795-bit-rsa-number (2019)
- 6.
Abhijit DA (2013) Computational number theory. Chapman and Hall/CRC 2013 Print. ISBN: 978-1-4398-6615-3
- 7.
Joux A (2013) A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic. Sel Areas Cryptogr LNCS 8282:355–379
- 8.
Barbulescu R, Gaudry P, Joux A, Thome E (2013) A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic (preprint), 8 pages. http://hal.inria.fr/hal-00835446
- 9.
Lenstra AK, Lenstra Jr HW (1993) The development of the number field sieve. Springer, LNM, p 1554
- 10.
Adleman LM (1994) The function field sieve. In: Algorithmic number theory (ANTS-I), LNCS, vol 877, Spinger, Berlin, pp 108–121
- 11.
Schirokauer O (2000) Using number fields to compute logarithms in finite fields. Math Comput 69(231):1267–1283
- 12.
Barbulescu R, Gaudry P, Kleinjung T (2015) The tower number field sieve. In: Advances in cryptology: ASIACRYPT 2015, LNCS, vol 9453, Springer, Berlin
- 13.
Kim T, Barbulescu R (2016) Extended tower number field sieve: a new complexity for the medium prime case. In: Advances in cryptology—CRYPTO 2016, LNCS, vol 9814, Springer, Berlin
- 14.
Zhu Y, Wen J, Zhuang J, Lv C, Lin D (2020) Theoretical computer science, vol 814, pp 49–68
- 15.
Granger R, Kleinjung T, Zumbrgel J (2014) Discrete logarithms in GF (29234)—NMBRTHRY list
- 16.
Granger R, Kleinjung T, Zumbrgel J (2014) Breaking 128-bit secure supersingular binary curves (or how to solve discrete logarithms in F (24–1223) and F (212–367). In: CRYPTO, vol 17, pp 126–145
- 17.
Glaglu F, Granger R, McGuire G, Zumbrgel J (2013) On the function field sieve and the impact of higher splitting probabilities: application to discrete logarithms in F (21971) and F (23164). In: Advances in cryptology: CRYPTO 2013, LNCS , vol 8043, pp 109–128
- 18.
Sarkar Palash (2016) Fine tuning the function field sieve algorithm for the medium prime case. IEEE Trans Inf Theory 62(4):2233–2253
- 19.
Sarkar P, Singh S (2016) New complexity trade-offs for the (multiple) number field sieve algorithm in nonprime fields. In: Fischlin M, Coron JS (eds) EUROCRYPT 2016. LNCS, vol 9665, Springer, pp 429–458
- 20.
Kleinjung T (2006) On polynomial selection for the general number field sieve. Math. Comput. 75:2037–2047
- 21.
Franke J, Kleinjung T (2005) Continued fractions and lattice sieving. In: Proceedings SHARCS 2005. http://www.ruhrunibochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf
- 22.
Aoki K, Ueda H (2004) Sieving using bucket sort. In: Lee PJ (ed) Advances in cryptology: ASIACRYPT 2004. ASIACRYPT, LNCS, vol 3329, Springer, Berlin
- 23.
Gaudry P, Gremy L, Videau M (2016) Collecting relations for the number field sieve in \(\text{GF}(p^{6})\). LMS J Comput Math 19(A): 332–350. 10.1112/S1461157016000164
- 24.
Sengupta B, Das Abhijit (2017) Use of SIMD-based data parallelism to speed up aieving in integer-factoring alogrithm. Appl Math Comput 293:204–217
- 25.
Pollard JM (993) The lattice sieve. Lenstra AK, Lenstra HW Jr (eds) The development of the number field sieve, LNM, vol 1554, Springer, Berlin, pp 43–49
- 26.
Joux A, Lercier R (2001) Discrete logarithms in \(GF(2^n )\) (521 bits), email to the NMBRTHRY mailing list. http://listserv.nodak.edu/archives/nmbrthry.html
- 27.
Joux A, Lercier R (2005) Discrete logarithms in \(GF(2^{607})\) and \(GF(2^{613})\). E-mail to the NMBRTHRY mailing list. http://listserv.nodak.edu/archives/nmbrthry
- 28.
Herstein IN (1975) Topics in algebra, 2nd edn. ISBN:978-0-471-01090-6
- 29.
Jarvis F (2014) Algebraic number theory. Springer, Berlin
- 30.
Joux A (2009) Algorithmic cryptanalysis, Chapman and Hall/CRC 2009 Print ISBN: 978-1-4200-7002-6 eBook ISBN: 978-1-4200-7003-3. https://doi.org/10.1201/9781420070033
- 31.
Case M (2003) A beginners guide to the general number field sieve. http://islab.oregonstate.edu/koc/ece575/03Project/Case/paper.pdf
- 32.
Joux A, Lercier R (2002) The function field sieve is quite special. In: Algorithmic numberv theory-ANTS V, LNCS, vol 2369, Springer, pp 431–445
- 33.
Barbulescu R (2013) Selecting polynomials for the function field sieve, preprint, p 23. http://hal.inria.fr/hal-00798386
- 34.
Golliver RA, Lenstra AK, McCurley KS (1994) Lattice sieving and trial division. In: Adleman LM, Huang MD (eds) Algorithmic number theory, LNCS, vol 877, Springer, pp 18–27
- 35.
JDetrey J, Gaudry P, Videau M (2013) Relation collection for the function field sieve. In: Nannarelli A, Seidel PM, Tang PTP (eds) Proceedings of ARITH-21, pp 201–210
- 36.
GGNFS Library. http://gilchrist.ca/jeff/factoring/nfs-beginners-guide.html
- 37.
CADO-NFS Library. http://cado-nfs.gforge.inria.fr/
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Varshney, S., Charpe, P., Padmavathy, R. et al. Relation collection using Pollard special-q sieving to solve integer factorization and discrete logarithm problem. J Supercomput 77, 2734–2769 (2021). https://doi.org/10.1007/s11227-020-03351-6
Published:
Issue Date:
Keywords
- Integer factorization
- Discrete logarithm
- Number field sieve (NFS )
- Function field sieve (FFS)
- Special-q lattice sieving
- Bucket sieving
- Line sieving