Skip to main content

Advertisement

Log in

An AI-based intelligent system for healthcare analysis using Ridge-Adaline Stochastic Gradient Descent Classifier

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Recent technological advancements in information and communication technologies introduced smart ways of handling various aspects of life. Smart devices and applications are now an integral part of our daily life; however, the use of smart devices also introduced various physical and psychological health issues in modern societies. One of the most common health care issues prevalent among almost all age groups is diabetes mellitus. This work aims to propose an artificial intelligence-based intelligent system for earlier prediction of the disease using Ridge-Adaline Stochastic Gradient Descent Classifier (RASGD). The proposed scheme RASGD improves the regularization of the classification model by using weight decay methods, namely least absolute shrinkage and selection operator and ridge regression methods. To minimize the cost function of the classifier, the RASGD adopts an unconstrained optimization model. Further, to increase the convergence speed of the classifier, the Adaline Stochastic Gradient Descent Classifier is integrated with ridge regression. Finally, to validate the effectiveness of the intelligent system, the results of the proposed scheme have been compared with state-of-the-art machine learning algorithms such as support vector machine and logistic regression methods. The RASGD intelligent system attains an accuracy of 92%, which is better than the other selected classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bedoui A, Lazar NA (2020) Bayesian empirical likelihood for ridge and lasso regressions. Comput Stat Data Anal 145:106917

    Article  MathSciNet  Google Scholar 

  2. Bhattacharya S, Kaluri R, Singh S, Alazab M, Tariq U et al (2020) A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics 9(2):219

    Article  Google Scholar 

  3. Bilge L, Dumitraş T (2012) Before we knew it: an empirical study of zero-day attacks in the real world. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp 833–844

  4. Boonyakunakorn P, Nunti C, Yamaka W (2019) Forecasting of Thailand’s rice exports price: based on ridge and lasso regression. In: Proceedings of the 2nd International Conference on Big Data Technologies, pp 354–357

  5. Carter JA, Long CS, Smith BP, Smith TL, Donati GL (2019) Combining elemental analysis of toenails and machine learning techniques as a non-invasive diagnostic tool for the robust classification of type-2 diabetes. Expert Syst Appl 115:245–255

    Article  Google Scholar 

  6. Centers for Disease Control and Prevention et al (2017) National diabetes statistics report, 2017. Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA, p 20

  7. Deepa N, Ganesan K (2016) Aqua site classification using neural network models. AGRIS On-line Pap Econ Inform 8(665–2016–45133):51–58

    Article  Google Scholar 

  8. Deepa N, Ganesan K (2016) Mahalanobis taguchi system based criteria selection tool for agriculture crops. Sādhanā 41(12):1407–1414

    Article  Google Scholar 

  9. Deepa N, Ganesan K (2018) Multi-class classification using hybrid soft decision model for agriculture crop selection. Neural Comput Appl 30(4):1025–1038

    Article  Google Scholar 

  10. Deepa N, Ganesan K (2019) Decision-making tool for crop selection for agriculture development. Neural Comput Appl 31(4):1215–1225

    Article  Google Scholar 

  11. Deepa N, Ganesan K (2019) Hybrid rough fuzzy soft classifier based multi-class classification model for agriculture crop selection. Soft Comput 23(21):10793–10809

    Article  Google Scholar 

  12. Fitriyani NL, Syafrudin M, Alfian G, Rhee J (2019) Development of disease prediction model based on ensemble learning approach for diabetes and hypertension. IEEE Access 7:144777–144789

    Article  Google Scholar 

  13. Fonti V, Belitser E (2017) Feature selection using lasso. In: VU Amsterdam Research Paper in Business Analytics, pp 1–25

  14. Gadekallu TR, Khare N (2017) Cuckoo search optimized reduction and fuzzy logic classifier for heart disease and diabetes prediction. Int J Fuzzy Syst Appl (IJFSA) 6(2):25–42

    Google Scholar 

  15. Gadekallu TR, Khare N, Bhattacharya S, Singh S, Reddy Maddikunta PK, Ra IH, Alazab M (2020) Early detection of diabetic retinopathy using pca-firefly based deep learning model. Electronics 9(2):274

    Article  Google Scholar 

  16. Iwendi C, Alqarni MA, Anajemba JH, Alfakeeh AS, Zhang Z, Bashir AK (2019) Robust navigational control of a two-wheeled self-balancing robot in a sensed environment. IEEE Access 7:82337–82348

    Article  Google Scholar 

  17. Iwendi C, Uddin M, Ansere JA, Nkurunziza P, Anajemba JH, Bashir AK (2018) On detection of sybil attack in large-scale vanets using spider-monkey technique. IEEE Access 6:47258–47267

    Article  Google Scholar 

  18. Javaid A, Ismail M, Ali MKM et al (2020) Efficient model selection of collector efficiency in solar dryer using hybrid of LASSO and robust regression. Pertanika J Sci Technol 28(1):193–210

    Google Scholar 

  19. Jia X, He D, Kumar N, Choo KKR (2019) Authenticated key agreement scheme for fog-driven iot healthcare system. Wirel Netw 25(8):4737–4750

    Article  Google Scholar 

  20. Kaggle (2019) Diabetes detection. https://www.kaggle.com/uciml/pima-indians-diabetes-database. Accessed Mar 2019

  21. Kalimeris D, Kaplun G, Nakkiran P, Edelman B, Yang T, Barak B, Zhang H (2019) SGD on neural networks learns functions of increasing complexity. In: Advances in Neural Information Processing Systems, pp 3491–3501

  22. Kaur G, Chhabra A (2014) Improved j48 classification algorithm for the prediction of diabetes. Int J Comput Appl 98(22):8887

    Google Scholar 

  23. Maniruzzaman M, Kumar N, Abedin MM, Islam MS, Suri HS, El-Baz AS, Suri JS (2017) Comparative approaches for classification of diabetes mellitus data: machine learning paradigm. Comput Methods Programs Biomed 152:23–34

    Article  Google Scholar 

  24. Maniruzzaman M, Rahman MJ, Al-MehediHasan M, Suri HS, Abedin MM, El-Baz A, Suri JS (2018) Accurate diabetes risk stratification using machine learning: role of missing value and outliers. J Med Syst 42(5):92

    Article  Google Scholar 

  25. Moreira MW, Rodrigues JJ, Furtado V, Kumar N, Korotaev VV (2019) Averaged one-dependence estimators on edge devices for smart pregnancy data analysis. Comput Electr Eng 77:435–444

    Article  Google Scholar 

  26. Moreira MW, Rodrigues JJ, Kumar N, Saleem K, Illin IV (2019) Postpartum depression prediction through pregnancy data analysis for emotion-aware smart systems. Inf Fusion 47:23–31

    Article  Google Scholar 

  27. Ogutu JO, Schulz-Streeck T, Piepho HP (2012) Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. In: BMC proceedings, vol 6. Springer, p S10

  28. American Diabetes Association (2019) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes Care 42(Supplement 1):S13–S28

    Article  Google Scholar 

  29. Patel H, Singh Rajput D, Thippa Reddy G, Iwendi C, Kashif Bashir A, Jo O (2020) A review on classification of imbalanced data for wireless sensor networks. Int J Distrib Sens Netw 16(4):1550147720916404

    Article  Google Scholar 

  30. Pereira JM, Basto M, da Silva AF (2016) The logistic lasso and ridge regression in predicting corporate failure. Procedia Econ Finance 39:634–641

    Article  Google Scholar 

  31. Priya RM, Bhattacharya S, Maddikunta PKR, Somayaji SRK, Lakshmanna K, Kaluri R, Hussien A, Gadekallu TR (2020) Load balancing of energy cloud using wind driven and firefly algorithms in internet of everything. J Parallel Distrib Comput 142:16–26

    Article  Google Scholar 

  32. Reddy GT, Khare N (2018) Heart disease classification system using optimised fuzzy rule based algorithm. Int J Biomed Eng Technol 27(3):183–202

    Article  Google Scholar 

  33. Reddy GT, Reddy MPK, Lakshmanna K, Kaluri R, Rajput DS, Srivastava G, Baker T (2020) Analysis of dimensionality reduction techniques on big data. IEEE Access 8:54776–54788

    Article  Google Scholar 

  34. Reddy GT, Reddy MPK, Lakshmanna K, Rajput DS, Kaluri R, Srivastava G (2019) Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis. Evol Intell 13:1–12

    Google Scholar 

  35. Reddy T, RM SP, Parimala M, Chowdhary CL, Hakak S, Khan WZ (2020) A deep neural networks based model for uninterrupted marine environment monitoring. Comput Commun. https://doi.org/10.1016/j.comcom.2020.04.004

    Article  Google Scholar 

  36. Sharma A (2018) Guided stochastic gradient descent algorithm for inconsistent datasets. Appl Soft Comput 73:1068–1080

    Article  Google Scholar 

  37. Sisodia D, Sisodia DS (2018) Prediction of diabetes using classification algorithms. Procedia Comput Sci 132:1578–1585

    Article  Google Scholar 

  38. Sopyła K, Drozda P (2015) Stochastic gradient descent with Barzilai–Borwein update step for SVM. Inf Sci 316:218–233

    Article  Google Scholar 

  39. Suppers A, Gool AJv, Wessels HJ (2018) Integrated chemometrics and statistics to drive successful proteomics biomarker discovery. Proteomes 6(2):20

    Article  Google Scholar 

  40. Uddin Z, Altaf M, Bilal M, Nkenyereye L, Bashir AK (2020) Amateur drones detection: a machine learning approach utilizing the acoustic signals in the presence of strong interference. Comput Commun. https://doi.org/10.1016/j.comcom.2020.02.065

    Article  Google Scholar 

  41. Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q (2020) IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture. Comput Netw 171:107138

    Article  Google Scholar 

  42. Wang L, Yang Y, Min R, Chakradhar S (2017) Accelerating deep neural network training with inconsistent stochastic gradient descent. Neural Netw 93:219–229

    Article  Google Scholar 

  43. Widrow B (1960) An adaptive ADALINE neuron using chemical. Stanford University

  44. Xing X, Wen D, Chang HC, Chen LF, Yuan ZH (2018) Highway deformation monitoring based on an integrated crinsar algorithmsimulation and real data validation. Int J Pattern Recognit Artif Intell 32(11):1850036

    Article  Google Scholar 

  45. Zeng X, Peng H, Zhou F (2017) A regularized SNPOM for stable parameter estimation of RBF-AR (X) model. IEEE Trans Neural Netw Learn Syst 29(4):779–791

    Article  Google Scholar 

  46. Zhang J, Yang K, Xiang L, Luo Y, Xiong B, Tang Q (2013) A self-adaptive regression-based multivariate data compression scheme with error bound in wireless sensor networks. Int J Distrib Sensor Netw 9(3):913497

    Article  Google Scholar 

  47. Zheng T, Xie W, Xu L, He X, Zhang Y, You M, Yang G, Chen Y (2017) A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform 97:120–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thippa Reddy Gadekallu or Thar Baker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, N., Prabadevi, B., Maddikunta, P.K. et al. An AI-based intelligent system for healthcare analysis using Ridge-Adaline Stochastic Gradient Descent Classifier. J Supercomput 77, 1998–2017 (2021). https://doi.org/10.1007/s11227-020-03347-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03347-2

Keywords

Navigation