A Riccati-type algorithm for solving generalized Hermitian eigenvalue problems


The paper describes a heuristic algorithm for solving a generalized Hermitian eigenvalue problem fast. The algorithm searches a subspace for an approximate solution of the problem. If the approximate solution is unacceptable, the subspace is expanded to a larger one, and then, in the expanded subspace a possibly better approximated solution is computed. The algorithm iterates these two steps alternately. Thus, the speed of the convergence of the algorithm depends on how to generate a subspace. In this paper, we derive a Riccati equation whose solution can correct the approximate solution of a generalized Hermitian eigenvalue problem to the exact one. In other words, the solution of the eigenvalue problem can be found if a subspace is expanded by the solution of the Riccati equation. This is a feature the existing algorithms such as the Krylov subspace algorithm implemented in the MATLAB and the Jacobi–Davidson algorithm do not have. However, similar to solving the eigenvalue problem, solving the Riccati equation is time-consuming. We consider solving the Riccati equation with low accuracy and use its approximate solution to expand a subspace. The implementation of this heuristic algorithm is discussed so that the computational cost of the algorithm can be saved. Some experimental results show that the heuristic algorithm converges within fewer iterations and thus requires lesser computational time comparing with the existing algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst HA (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, New York

    Google Scholar 

  2. 2.

    Sleijpen GLG, van der Vorst HA (1996) A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal Appl 17(2):401–425

    MathSciNet  Article  Google Scholar 

  3. 3.

    Fokkema DR, Sleijpen GLG, van der Vorst HA (1998) Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J Sci Comput 20(1):94–125

    MathSciNet  Article  Google Scholar 

  4. 4.

    Vömel C, Tomov SZ, Marques OA, Canning A, Wang LW, Dongarra JJ (2008) State-of-the-art eigensolvers for electronic structure calculations of large scale nano-systems. J Comput Phys 227(15):7113–7124

    Article  Google Scholar 

  5. 5.

    Bandlow B, Sievers D, Schuhmann R (2010) An improved Jacobi–Davidson method for the computation of selected eigenmodes in waveguide cross sections. IEEE Trans Magn 46(8):3461–3464

    Article  Google Scholar 

  6. 6.

    Li C, Du Z, Liao P (2015) Computing interarea oscillation modes of large-scale power systems using two-sided Jacobi–Davidson method. IEEE Trans Power Syst 30(6):2946–2954

    Article  Google Scholar 

  7. 7.

    Huang TM, Lin WW, Wang W (2016) A hybrid Jacobi–Davidson method for interior cluster eigenvalues with large null-space in three dimensional lossless Drude dispersive metallic photonic crystals. Comput Phys Commun 207:221–231

    MathSciNet  Article  Google Scholar 

  8. 8.

    Brandts JH (2003) Solving eigenproblems: from arnoldi via Jacobi–Davidson to the Riccati method. Lect Notes Comput Sci 2542:167–173

    MathSciNet  Article  Google Scholar 

  9. 9.

    Brandts JH (2003) The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action. Linear Algebra Appl 358(1–3):335–365

    MathSciNet  Article  Google Scholar 

  10. 10.

    Miyata T (2018) On correction-based iterative methods for eigenvalue problems. IEICE Trans Fundam 10:1668–1675

    Article  Google Scholar 

  11. 11.

    Francis JGF (1961) The QR transformation: a unitary analogue to the LR transformation, parts I. Comput J 4(3):265–271

    MathSciNet  Article  Google Scholar 

  12. 12.

    Francis JGF (1962) The QR transformation: a unitary analogue to the LR transformation, parts II. Comput J 4(4):332–345

    Article  Google Scholar 

  13. 13.

    Kublanovskaya VN (1962) On some algorithms for the solution of the complete eigenvalue problem. USSR Comput Math Math Phys 1(3):637–657

    Article  Google Scholar 

  14. 14.

    Golub GH, Loan CFV (2012) Matrix computations. Johns Hopkins University Press, Baltimore

    Google Scholar 

  15. 15.

    Moler CB, Stewart GW (1973) An algorithm for generalized matrix eigenvalue problems. SIAM J Numer Anal 10(2):241–256

    MathSciNet  Article  Google Scholar 

  16. 16.

    Paige CC, Saunders MA (1975) Solution of sparse indefinite systems of linear equations. SIAM J Numer Anal 12(4):617–629

    MathSciNet  Article  Google Scholar 

  17. 17.

    van der Vorst HA (2003) Iterative Krylov methods for large linear systems. Cambridge University Press, Cambridge

    Google Scholar 

  18. 18.

    Davis TA, Hu Y (2011) The university of Florida sparse matrix collection. ACM Trans Math Softw 38(1): 1–25. Available as the SuiteSparse matrix collection (http://www.cise.ufl.edu/research/sparse/matrices/)

  19. 19.

    Bai Z, Day D, Demmel J, Dongarra J (1997) A test matrix collection for non-Hermitian eigenvalue problems. LAPACK Work Note 123:1–45

    Google Scholar 

  20. 20.

    Medale M, Cochelin B, Bissen E, Alpy N (2020) A one-dimensional full-range two-phase model to efficiently compute bifurcation diagrams in sub-cooled boiling flows in vertical heated tube. J Comput Phys 404(109131):1–23

    MathSciNet  Google Scholar 

  21. 21.

    Güttel S, Tisseur F (2017) The nonlinear eigenvalue problem. Acta Numer 26:1–94

    MathSciNet  Article  Google Scholar 

  22. 22.

    Tikhov SV, Valovik DV (2019) Maxwell’s equations with arbitrary self-action nonlinearity in a waveguiding theory: guided modes and asymptotic of eigenvalues. J Math Anal Appl 479(1):1138–1157

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by KAKENHI Grant Number 18K11343.

Author information



Corresponding author

Correspondence to Takafumi Miyata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyata, T. A Riccati-type algorithm for solving generalized Hermitian eigenvalue problems. J Supercomput 77, 2091–2102 (2021). https://doi.org/10.1007/s11227-020-03331-w

Download citation


  • Generalized Hermitian eigenvalue problem
  • Riccati equation
  • Orthogonal component correction
  • Iterative algorithm