Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata


Quantum dot cellular automata (QCA)-based demultiplexer or DeMUX is a basic module of nanocommunication and nanocomputation, like a multiplexer. However, the design and analysis of demultiplexer using QCA have been neglected by researchers, unlike multiplexer. This article proposed and analyzed a simple and optimized QCA-based single-layered demultiplexer only using two majority gates, one inverter and two clocks. Our proposed area-efficient DeMUX has a complexity of 21 QCA cells, which covered a total area of 20,412 nm2 and a cell area of 6804 nm2 with area usage of 33.33%. The latency of the proposed block is 0.5 clock, and the calculated cost is 20. The energy dissipation analysis using QDE tool shows that the total energy dissipation is 8.64e−003 eV and the average energy dissipation per cycle is 7.85e−004 eV of QCA demultiplexer. Also, energy has been calculated using the popular tool QCAPro in three tunneling levels with \(\gamma =0.5E_{\mathrm{K}},\gamma =1.0E_{\mathrm{K}}\) and \(\gamma =1.5E_{\mathrm{K}}\) at 2K temperature, and the total energy dissipated as 32.86 meV, 41.41 meV and 52.21 meV, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57. https://doi.org/10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  2. 2.

    Ahmadpour S, Mosleh M, Heikalabad SR (2020) The design and implementation of a robust single-layer qca alu using a novel fault-tolerant three-input majority gate. J Supercomput. https://doi.org/10.1007/s11227-020-03249-3

    Article  Google Scholar 

  3. 3.

    Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825. https://doi.org/10.1063/1.356375

    Article  Google Scholar 

  4. 4.

    Goswami M, Chattopadhyay S, Tripathi SB, Sen B (2020) Design of fault tolerant majority voter for error resilient TMR targeting micro to nano scale logic. Int J Comput Sci Eng 21(3):375–393. https://doi.org/10.1504/IJCSE.2020.106062

    Article  Google Scholar 

  5. 5.

    Khan A, Chakrabarty R (2013) Design of high polarized binary wires using minimum number of cells & related kink energy calculations in quantum dot cellular automata. Int J Electron Commun Technol 4(Spl-2):54–57

    Google Scholar 

  6. 6.

    Khan A, Chakrabarty R (2013) Novel design of high polarized inverter using minimum number of rotated cells and related kink energy calculation in quantum dot cellular automata. Int J Soft Comput Eng 3(1):165–169

    Google Scholar 

  7. 7.

    Bahar AN, Ahmad F, Wani S, Al-Nisa S, Bhat GM (2019) New modified-majority voter-based efficient QCA digital logic design. Int J Electron 106(3):333–348. https://doi.org/10.1080/00207217.2018.1531315

    Article  Google Scholar 

  8. 8.

    Singh G, Sarin R, Raj B (2017) Design and analysis of area efficient QCA based reversible logic gates. Microprocess Microsyst 52:59–68. https://doi.org/10.1016/j.micpro.2017.05.017

    Article  Google Scholar 

  9. 9.

    Perri S, Corsonello P, Cocorullo G (2014) Area-delay efficient binary adders in QCA. IEEE Trans Very Large Scale Integr Syst 22(5):1174–1179. https://doi.org/10.1109/TVLSI.2013.2261831

    Article  Google Scholar 

  10. 10.

    Balali M, Rezai A, Balali H, Rabiei F, Emadi S (2017) Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys 7:1389–1395. https://doi.org/10.1016/j.rinp.2017.04.005

    Article  Google Scholar 

  11. 11.

    Mokhtari D, Rezai A, Rashidi H, Rabiei F, Emadi S, Karimi A (2018) Design of novel efficient full adder architecture for quantum-dot cellular automata technology. Facta Univ Ser Electron Energ 31(2):279–285. https://doi.org/10.2298/FUEE1802279M

    Article  Google Scholar 

  12. 12.

    Roshany HR, Rezai A (2019) Novel efficient circuit design for multilayer QCA RCA. Int J Theor Phys 58:1745–1757. https://doi.org/10.1007/s10773-019-04069-9

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Cho H, Swartzlander EE (2009) Adder and multiplier design in quantum-dot cellular automata. IEEE Trans Comput 58(6):721–727. https://doi.org/10.1109/TC.2009.21

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    AlKaldy E, Majeed AH, Zainal MS, Nor DBM (2020) Optimum multiplexer design in quantum-dot cellular automata. Indones J Electr Eng Comput Sci 17(1):148–155. https://doi.org/10.11591/ijeecs.v17.i1.pp148-155

    Article  Google Scholar 

  15. 15.

    Khan A, Arya R (2019) Energy dissipation and cell displacement analysis of QCA multiplexer for nanocomputation. In: 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Chennai, India, pp 1–5. https://doi.org/10.1109/ICESIP46348.2019.8938359

  16. 16.

    Singh S, Pandey S, Wairya S (2016) Modular design of 2n:1 quantum dot cellular automata multiplexers and its application, via clock zone based crossover. Int J Mod Educ Comput Sci 8(7):41–52. https://doi.org/10.5815/ijmecs.2016.07.05

    Article  Google Scholar 

  17. 17.

    Iqbal J, Khanday FA, Shah NA (2013) Design of quantum-dot cellular automata (qca) based modular 2n-1-2n mux–demux. In: IEEE International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). Aligarh 2013, pp 189–193. https://doi.org/10.1109/MSPCT.2013.6782116

  18. 18.

    Ahmad F (2017) An optimal design of QCA based \(2^n:1/1:2^n\) multiplexer/demultiplexer and its efficient digital logic realization. Microprocess Microsyst 56:64–75. https://doi.org/10.1016/j.micpro.2017.10.010

    Article  Google Scholar 

  19. 19.

    Safoev N, Jeon J (2016) Low area complexity demultiplexer based on multilayer quantum-dot cellular automata. Int J Control Autom 9(12):165–178. https://doi.org/10.14257/ijca.2016.9.12.15

    Article  Google Scholar 

  20. 20.

    Das JC, De D (2017) Circuit switching with quantum-dot cellular automata. Nano Commun Netw 14:16–28. https://doi.org/10.1016/j.nancom.2017.09.002

    Article  Google Scholar 

  21. 21.

    Shah NA, Khanday FA, Bangi ZA, Iqbal J (2011) Design of quantum-dot cellular automata (QCA) based modular 1 to 2n demultiplexers. Int J Nanotechnol Appl 5(1):47–58

    Google Scholar 

  22. 22.

    Das B, Mahmood M, Rabeya M, Bardhan R (2019) An effective design of 2:1 multiplexer and 1:2 demultiplexer using 3-dot QCA architecture. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, pp 570–575. https://doi.org/10.1109/icrest.2019.8644353

  23. 23.

    Sardinha LHB, Costa AMM, Neto OPV, Vieira LFM, Vieira MAM (2013) Nanorouter: a quantum-dot cellular automata design. IEEE J Sel Areas Commun 31(12):825–834. https://doi.org/10.1109/JSAC.2013.SUP2.12130015

    Article  Google Scholar 

  24. 24.

    Huang J, Momenzadeh M, Lombardi F (2007) Design of sequential circuits by quantum-dot cellular automata. Microelectron J 38(4–5):525–537. https://doi.org/10.1016/j.mejo.2007.03.013

    Article  Google Scholar 

  25. 25.

    Abdullah-Al-Shafi M, Bahar AN, Habib MA, Bhuiyan MMR, Ahmad F, Ahmad PZ, Ahmed K (2018) Designing single layer counter in quantum-dot cellular automata with energy dissipation analysis. Ain Shams Eng J 9(4):2641–2648. https://doi.org/10.1016/j.asej.2017.05.010

    Article  Google Scholar 

  26. 26.

    Sabbaghi-Nadooshan R, Kianpour M (2014) A novel QCA implementation of mux-based universal shift register. J Comput Electron 13:198–210. https://doi.org/10.1007/s10825-013-0500-9

    Article  MATH  Google Scholar 

  27. 27.

    Vankamamidi V, Ottavi M, Lombardi F (2005) A line-based parallel memory for QCA implementation. IEEE Trans Nanotechnol 4(6):690–698. https://doi.org/10.1109/TNANO.2005.858589

    Article  Google Scholar 

  28. 28.

    Vankamamidi V, Ottavi M, Lombardi F (2008) A serial memory by quantum-dot cellular automata (QCA). IEEE Trans Comput 57(5):606–618. https://doi.org/10.1109/TC.2007.70831

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Hu XS, Crocker M, Niemier M, Yan Minjun, Bernstein G (2006) PLAs in quantum-dot cellular automata. In: IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures (ISVLSI’06). Karlsruhe 2006, p 6. https://doi.org/10.1109/ISVLSI.2006.73

  30. 30.

    Niemier MT, Kontz MJ, Kogge PM (2000) A design of and design tools for a novel quantum dot based microprocessor. In: Annual Design Automation Conference (DAC ’00). Association for Computing Machinery, New York, NY, USA, 2000, pp 227–232. https://doi.org/10.1145/337292.337398

  31. 31.

    De D, Das JC (2020) Nanocomputing channel fidelity of QCA code converter circuits under thermal randomness. J Comput Electron 19:419–434. https://doi.org/10.1007/s10825-019-01411-6

    Article  Google Scholar 

  32. 32.

    Bahar AN, Wahid KA (2020) Design of an efficient \(N \times N\) butterfly switching network in quantum-dot cellular automata (QCA). IEEE Trans Nanotechnol 19:147–155. https://doi.org/10.1109/TNANO.2020.2969166

    Article  Google Scholar 

  33. 33.

    Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31. https://doi.org/10.1109/TNANO.2003.820815

    Article  Google Scholar 

  34. 34.

    QCADesigner-E (2017) https://github.com/FSillT/QCADesigner-E. Accessed 12 Mar 2019

  35. 35.

    Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro—an error-power estimation tool for QCA circuit design. In: IEEE International Symposium of Circuits and Systems (ISCAS). Rio de Janeiro 2011, pp 2377–2380. https://doi.org/10.1109/ISCAS.2011.5938081

  36. 36.

    Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557. https://doi.org/10.1109/5.573740

    Article  Google Scholar 

  37. 37.

    Porod W, Lent C, Bernstein GH, Orlov AO, Hamlani I, Snider GL, Merz JL (1999) Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron 86(5):549–590. https://doi.org/10.1080/002072199133265

    Article  Google Scholar 

  38. 38.

    Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Science 277(5328):928–930. https://doi.org/10.1126/science.277.5328.928

    Article  Google Scholar 

  39. 39.

    Retallick J, Walus K (2020) Limits of adiabatic clocking in quantum-dot cellular automata. J Appl Phys 127:054502. https://doi.org/10.1063/1.5135308

    Article  Google Scholar 

  40. 40.

    Chaves JF, Ribeiro MA, Torres FS, Neto OPV (2018) Enhancing fundamental energy limits of field-coupled nanocomputing circuits. In: IEEE International Symposium on Circuits and Systems (ISCAS). Florence 2018, pp 1–5. https://doi.org/10.1109/ISCAS.2018.8351150

  41. 41.

    Torres FS, Niemann P, Wille R, Drechsler R (2018) Breaking Landauer’s limit using quantum-dot cellular automata. https://arxiv.org/pdf/1811.03894.pdf. Accessed 12 Jan 2019

  42. 42.

    Sill Torres F, Wille R, Niemann P, Drechsler R (2018) An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans Comput-Aided Des Integr Circuits Syst 37(12):3031–3041. https://doi.org/10.1109/TCAD.2018.2789782

    Article  Google Scholar 

  43. 43.

    Timler J, Lent CS (2002) Power gain and dissipation in quantum-dot cellular automata. J Appl Phys 91(2):823–831. https://doi.org/10.1063/1.1421217

    Article  Google Scholar 

  44. 44.

    Srivastava S, Sarkar S, Bhanja S (2009) Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans Nanotechnol 8(1):116–127. https://doi.org/10.1109/TNANO.2008.2005408

    Article  Google Scholar 

  45. 45.

    Liu W, Lu L, O’Neill M, Swartzlander EE (2014) A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans Nanotechnol 13(3):476–487. https://doi.org/10.1109/TNANO.2014.2306754

    Article  Google Scholar 

  46. 46.

    Khosroshahy MB, Moaiyeri MH, Navi K, Bagherzadeh N (2017) An energy and cost efficient majority-based ram cell in quantum-dot cellular automata. Results Phys 7:3543–3551. https://doi.org/10.1016/j.rinp.2017.08.067

    Article  Google Scholar 

Download references


The authors would like to thank A. N. Bahar, Dept. of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada, for his unconditional help to simulate circuits.

Author information



Corresponding authors

Correspondence to Angshuman Khan or Rajeev Arya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Arya, R. Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata. J Supercomput 77, 1714–1738 (2021). https://doi.org/10.1007/s11227-020-03320-z

Download citation


  • Demultiplexer
  • Energy dissipation
  • Nanocomputing
  • QCAPro
  • QDE