Research on navigation of bidirectional A* algorithm based on ant colony algorithm

Abstract

To overcome the lengthy search time, massive space occupation, and overlong planned path of the traditional A* algorithm, this paper integrates the bidirectional search with the intelligent ant colony algorithm to obtain the heuristic function selection factor, and uses the factor to improve the evaluation function of the algorithm. The simulation results show that the improved algorithm achieved better dynamic navigation than the traditional A* algorithm both in search time and distance, featuring shorter path searching time and the algorithm running time. Therefore, the result of this research has effectively reduced the search time and enhanced the dynamic search.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Wen MF (2013) An increment searching based on multi-objective path guidance method in intelligent transportation. J Hunan Univ (Nat Sci) 5:55–60

    Google Scholar 

  2. 2.

    Tian MX (2009) Application research on path planning in vehicle navigation system. Beijing Jiaotong University, Beijing, pp 32–35

    Google Scholar 

  3. 3.

    Yan KF (2001) Algorithm for dynamic K shortest-paths in vehicle navigation system based on GIS. J Xi’an Highw Univ 1:64–67

    Google Scholar 

  4. 4.

    Yang ZS, Jiang GY (1999) A study on the application of fluid neuron network under nonstandard condition. Syst Eng Theory Pract 8:55–57

    Google Scholar 

  5. 5.

    Zhou HH, Wang XG (1997) A study of the automatic vehicle location algorithm. J South China Univ Technol (Nat Sci) 25:114–115

    Google Scholar 

  6. 6.

    Szczerba RJ (2000) Robust algorithm for real-time route planning. IEEE Trans Aerosp Electron Syst 36:869–878

    Article  Google Scholar 

  7. 7.

    Geng XL, Li CJ (2011) Application of parallel reinforcement learning based on artificial neural network to adaptive path planning. Sci Technol Eng 11:756

    Google Scholar 

  8. 8.

    Pan HB (2009) A* algorithms to find the path. Technol BBS 18:21

    Google Scholar 

  9. 9.

    Ge Y, Wang J, Meng Y, Jiang F (2010) Research progress on dynamic route planning of vehicle navigation. J Highw Transp Res Dev 27:113–117

    Google Scholar 

  10. 10.

    Yang L (2008) Research and implement of route layout algorithm in vehicle navigation system. Beijing Jiaotong University, Beijing, pp 30–37

    Google Scholar 

  11. 11.

    Tsu-Yang W, Chen C-M, Wang K-H, Meng C, Wang EK (2019) A provably secure certificateless public key encryption with keyword search. J Chin Inst Eng 42(1):20–28

    Article  Google Scholar 

  12. 12.

    Chen C-M, Wang K-H, Yeh K-H, Xiang B, Tsu-Yang W (2019) Attacks and solutions on a three-party password-based authenticated key exchange protocol for wireless communications. J Ambient Intell Humaniz Comput 10(8):3133–3142

    Article  Google Scholar 

  13. 13.

    Chen C-M, Xiang B, Liu Y, Wang K-H (2019) A secure authentication protocol for internet of vehicles. IEEE Access 7(1):12047–12057

    Article  Google Scholar 

  14. 14.

    Pan Jeng-Shyang, Pei Hu, Chu Shu-Chuan (2019) Novel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind power. Processes 7(11):845. https://doi.org/10.3390/pr7110845

    Article  Google Scholar 

  15. 15.

    Wang Z, Li T, Xiong N, Pan Y (2012) A novel dynamic network data replication scheme based on historical access record and proactive deletion. J Supercomput 62(1):227–250

    Article  Google Scholar 

  16. 16.

    Zeng Y, Sreenan CJ, Xiong N, Yang LT, Park JH (2010) Connectivity and coverage maintenance in wireless sensor networks. J Supercomput 52(1):23–46

    Article  Google Scholar 

  17. 17.

    Lin C, He YX, Xiong N (2006) An energy-efficient dynamic power management in wireless sensor networks. In: 2006 Fifth International Symposium on Parallel and Distributed Computing

  18. 18.

    Sang Y, Shen H, Tan Y, Xiong N (2006) Efficient protocols for privacy preserving matching against distributed datasets. In: International Conference on Information and Communications Security, pp 210–227

  19. 19.

    Fang Z, Fei F, Fang Y, Lee C, Xiong N, Shu L, Chen S (2016) Abnormal event detection in crowded scenes based on deep learning. Multimed Tools Appl 75(22):14617–14639

    Article  Google Scholar 

  20. 20.

    Li J, Xiong N, Park JH, Liu C, Shihua MA, Cho SE (2012) Intelligent model design of cluster supply chain with horizontal cooperation. J Intell Manuf 23(4):917–931

    Article  Google Scholar 

  21. 21.

    Guo W, Xiong N, Vasilakos AV, Chen G, Yu C (2012) Distributed k-connected fault-tolerant topology control algorithms with PSO in future autonomic sensor systems. Int J Sens Netw 12(1):53–62

    Article  Google Scholar 

  22. 22.

    Tan BC, Wang P (2012) Improvement and implementation of A* path planning algorithm. J Xi’an Technol Univ 30:325–329

    Google Scholar 

  23. 23.

    Li WG, Su X (2015) AGV path planning based on improved A* algorithm. Mod Manuf Eng 10:33–36

    Google Scholar 

  24. 24.

    Jabbarpour MR, Zarrabi H, Jung JJ, Kim P (2017) A green ant-based method for path planning of unmanned ground vehicles. IEEE Access 5:1820–1830

    Article  Google Scholar 

  25. 25.

    Escario JB, Jimenez JF, Giron-Sierra JM (2015) Antcolony extended: experiments on the travelling salesman problem. Expert Syst Appl 42:390–410

    Article  Google Scholar 

  26. 26.

    Xu CB, Liu YM (2009) Research on dynamic route guidance algorithm. Highw Transp Technol (Appl Technol) 10:35–36

    Google Scholar 

  27. 27.

    Huo ZS (2012) Research on optimal path of dynamic route guidance system. Shen Yang Aerospace University, Shenyang, pp 28–44

    Google Scholar 

  28. 28.

    Vine SL, Zolfaghari A, Polak J (2015) Autonomous cars: the tension between occupant experience and intersection capacity. Transp Res C Emerg Technol 52:1–14

    Article  Google Scholar 

  29. 29.

    Wang ZY, Xing HL, Li TR, Yang Y, Qu R, Pan Y (2016) A modified ant colony optimization algorithm for network coding resource minimization. IEEE Trans Evol Comput 20:325–342

    Article  Google Scholar 

  30. 30.

    Zheng F, Zecchin AC, Newman JP, Maier HR, Dandy GC (2017) An adaptive convergence-trajectory controlled ant colony optimization algorithm with application to water distribution system design problems. IEEE Trans Evol Comput 21:773–790

    Article  Google Scholar 

  31. 31.

    Xia Y, Chen T, Shan J (2014) A novel iterative method for computing generalized inverse. Neural Comput 26(2):449–465

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Zhong S, Chen T, He F et al (2014) Fast Gaussian kernel learning for classification tasks based on specially structured global optimization. Neural Netw 57:51–62

    MATH  Article  Google Scholar 

  33. 33.

    Zhang S, Xia Y, Wang J (2015) A complex-valued projection neural network for constrained optimization of real functions in complex variables. IEEE Trans Neural Netw Learn Syst 26(12):3227–3238

    MathSciNet  Article  Google Scholar 

  34. 34.

    Xia Y, Wang J (2015) Low-dimensional recurrent neural network-based Kalman filter for speech enhancement. Neural Netw 67:131–139

    Article  Google Scholar 

  35. 35.

    Zhang S, Xia Y, Zheng W (2015) A complex-valued neural dynamical optimization approach and its stability analysis. Neural Netw 61:59–67

    MATH  Article  Google Scholar 

  36. 36.

    Liu G, Huang X, Guo W et al (2015) Multilayer obstacle-avoiding X-architecture steiner minimal tree construction based on particle swarm optimization. IEEE Trans Cybern 45(5):989–1002

    Google Scholar 

  37. 37.

    Xia Y, Wang J (2016) A bi-projection neural network for solving constrained quadratic optimization problems. IEEE Trans Neural Netw Learn Syst 27(2):214–224

    MathSciNet  Article  Google Scholar 

  38. 38.

    Zhang S, Xia Y (2016) Two fast complex-valued algorithms for solving complex quadratic programming problems. IEEE Trans Cybern 46(12):2837–2847

    MathSciNet  Article  Google Scholar 

  39. 39.

    Huang Z, Yu Y, Gu J et al (2017) An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans Cybern 47(4):920–933

    Article  Google Scholar 

  40. 40.

    Guo K, Zhang Q (2013) Fast clustering-based anonymization approaches with time constraints for data streams. Knowl-Based Syst 46:08–95

    Article  Google Scholar 

  41. 41.

    Chen X, Jian C (2014) Gene expression data clustering based on graph regularized subspace segmentation. Neurocomputing 143:44–50

    Article  Google Scholar 

  42. 42.

    Ye D, Chen Z (2015) A new approach to minimum attribute reduction based on discrete artificial bee colony. Soft Comput 19(7):1893–1903

    Article  Google Scholar 

  43. 43.

    Liu G, Guo W, Li R et al (2015) XGRouter: high-quality global router in X-architecture with particle swarm optimization. Front Comput Sci 9(4):576–594

    Article  Google Scholar 

  44. 44.

    Liu G, Guo W, Niu Y et al (2015) A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction. Soft Comput 19(5):1153–1169

    MATH  Article  Google Scholar 

  45. 45.

    Guo W, Sun X, Niu Y (2014) Multi-scale saliency detection via inter-regional shortest colour path. IET Comput Vis 9(2):290–299

    Article  Google Scholar 

  46. 46.

    Yang LH, Wang YM, Su Q et al (2016) Multi-attribute search framework for optimizing extended belief rule-based systems. Inf Sci 370:159–183

    Article  Google Scholar 

  47. 47.

    He Z (2016) Evolutionary K-means with pair-wise constraints. Soft Comput 20(1):287–301

    Article  Google Scholar 

  48. 48.

    Xia Y, Leung H, Kamel MS (2016) A discrete-time learning algorithm for image restoration using a novel L2-norm noise constrained estimation. Neurocomputing 198:155–170

    Article  Google Scholar 

  49. 49.

    Tu J, Xia Y, Zhang S (2017) A complex-valued multichannel speech enhancement learning algorithm for optimal tradeoff between noise reduction and speech distortion. Neurocomputing 267:333–343

    Article  Google Scholar 

  50. 50.

    Yu Y, Sun Z (2017) Sparse coding extreme learning machine for classification. Neurocomputing 261:50–56

    Article  Google Scholar 

  51. 51.

    Luo F, Guo W, Yu Y et al (2017) A multi-label classification algorithm based on kernel extreme learning machine. Neurocomputing 260:313–320

    Article  Google Scholar 

  52. 52.

    Wang S, Guo W (2017) Robust co-clustering via dual local learning and high-order matrix factorization. Knowl-Based Syst 138:176–187

    Article  Google Scholar 

  53. 53.

    Yuzhen N, Wenqi L, Xiao K (2018) CF-based optimisation for saliency detection. IET Comput Vis 12(4):365–376

    Article  Google Scholar 

  54. 54.

    Zhu W, Lin G, Ali MM (2013) Max-k-cut by the discrete dynamic convexized method. INFORMS. https://doi.org/10.1287/ijoc.1110.0492

    Article  Google Scholar 

  55. 55.

    Yang Y (2014) Broadcast encryption based non-interactive key distribution in MANETs. J Comput Syst Sci 80(3):533–545

    MATH  Article  Google Scholar 

  56. 56.

    Pan J-S, Lee C-Y, Sghaier A, Zeghid M, Xie J (2019) Novel systolization of subquadratic space complexity multipliers based on toeplitz matrix–vector product approach. IEEE Trans Very Large Scale Integr Syst 27(7):1614–1622

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by Special Fund for Science and Technology Innovation Cultivation for College Students in Guangdong Province. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group No. RG- 1441-331.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-qiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Guo, J., Yang, H. et al. Research on navigation of bidirectional A* algorithm based on ant colony algorithm. J Supercomput (2020). https://doi.org/10.1007/s11227-020-03303-0

Download citation

Keywords

  • Heuristic function
  • A* algorithm
  • Path planning
  • Bidirectional search
  • Ant colony algorithm (ACA)