The Journal of Supercomputing

, Volume 74, Issue 7, pp 3114–3147 | Cite as

Priority-based capacity and power allocation in co-located WBANs using Stackelberg and bargaining games

  • Jingxian Wang
  • Yongmei Sun
  • Yuefeng Ji


To mitigate the interference in co-located wireless body area networks (WBANs), this paper proposes an inter-WBAN priority-based capacity allocation scheme based on the Nash bargaining game, and an intra-WBAN priority-based power control scheme based on the Stackelberg game. Moreover, under the network capacity imposed by the Nash bargaining solution, two pricing mechanisms: non-uniform pricing and uniform pricing, are introduced in the Stackelberg game and the Stackelberg equilibrium under each mechanism is achieved analytically. Additionally, owing to the special features of WBANs, the players priorities indicated by exigency of the sensed data and the energy consumption of sensors are considered in the design of utility functions. Extensive simulations show that the proposed schemes are energy efficient and can improve the network quality of service in terms of real time and reliability of critical data transmission.


Wireless body area networks (WBANs) Interference mitigation Capacity allocation Power control Nash bargaining game Stackelberg game 



This research was supported by National Natural Science Foundation of China (No. 61372118).


  1. 1.
    Cavallari R, Martelli F, Rosini R, Buratti C, Verdone R (2014) A survey on wireless body area networks: technologies and design challenges. IEEE Commun Surv Tutor 16(3):1635–1657CrossRefGoogle Scholar
  2. 2.
    Movassaghi S, Abolhasan M, Lipman J, Smith D, Jamalipour A (2014) Wireless body area networks: a survey. IEEE Commun Surv Tutor 16(3):1658–1686CrossRefGoogle Scholar
  3. 3.
    Islam S-R, Kwak D, Kabir M-H, Hossain M, Kwak K-S (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678–708CrossRefGoogle Scholar
  4. 4.
    Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376CrossRefGoogle Scholar
  5. 5.
    de Silva B, Natarajan A, Motani M (2009) Inter-user interference in body sensor networks: preliminary investigation and an infrastructure-based solution. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, USA, pp 35–40Google Scholar
  6. 6.
    Kim E-J, Youm S, Shon T, Kang C-H (2013) Asynchronous inter-network interference avoidance for wireless body area networks. J Supercomput 65(2):562–579CrossRefGoogle Scholar
  7. 7.
    Salayma M, Al-Dubai A, Romdhani I, Nasser Y (2017) Wireless body area network (WBAN): a survey on reliability, fault tolerance, and technologies coexistence. ACM Comput Surv 50(1):3CrossRefGoogle Scholar
  8. 8.
    Le T-T, Moh S (2015) Interference mitigation schemes for wireless body area sensor networks: a comparative survey. Sensors 15(6):13805–13838CrossRefGoogle Scholar
  9. 9.
    Fang G, Dutkiewicz E, Yu K, Vesilo R, Yu Y (2010) Distributed inter-network interference coordination for wireless body area networks. In: 2010 IEEE In Global Telecommunications Conference (GLOBECOM), Florida, USA, pp 1–5Google Scholar
  10. 10.
    Kazemi R, Vesilo R, Dutkiewicz E, Fang G (2010) Inter-network interference mitigation in wireless body area networks using power control games. In: 2010 International Symposium on Communications and Information Technologies (ISCIT), Tokyo, Japan, pp 81–86Google Scholar
  11. 11.
    Zou L, Liu B, Chen C, Chen C-W (2014) Bayesian game based power control scheme for inter-WBAN interference mitigation. In: 2014 IEEE In Global Communications Conference (GLOBECOM), TX, USA, pp 240–245Google Scholar
  12. 12.
    Meharouech A, Elias J, Paris S, Mehaoua A (2015) A game theoretical approach for interference mitigation in body-to-body networks. In: 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, pp 259–264Google Scholar
  13. 13.
    Meharouech A, Elias J, Mehaoua A (2016) A two-stage game theoretical approach for interference mitigation in body-to-body networks. Comput Netw 95:15–34CrossRefGoogle Scholar
  14. 14.
    Elias J, Paris S, Krunz M (2015) Cross-technology interference mitigation in body area networks: an optimization approach. IEEE Trans Veh Technol 64(9):4144–4157CrossRefGoogle Scholar
  15. 15.
    Cheng S-H, Huang C-Y (2013) Coloring-based inter-WBAN scheduling for mobile wireless body area networks. IEEE Trans Parallel Distrib Syst 24(2):250–259MathSciNetCrossRefGoogle Scholar
  16. 16.
    Movassaghi S, Abolhasan M, Smith D, Jamalipour A (2014) AIM: Adaptive internetwork interference mitigation amongst co-existing wireless body area networks. In: 2014 IEEE In Global Communications Conference (GLOBECOM), TX, USA, pp 2460–2465Google Scholar
  17. 17.
    Seo S, Bang H, Lee H (2016) Coloring-based scheduling for interactive game application with wireless body area networks. J Supercomput 72(1):185–195CrossRefGoogle Scholar
  18. 18.
    Misra S, Sarkar S (2015) Priority-based time-slot allocation in wireless body area networks during medical emergency situations: an evolutionary game-theoretic perspective. IEEE J Biomed Health Inform 19(2):541–548CrossRefGoogle Scholar
  19. 19.
    Misra S, Moulik S, Chao H-C (2015) A cooperative bargaining solution for priority-based data-rate tuning in a wireless body area network. IEEE Trans Wirel Commun 14(5):2769–2777CrossRefGoogle Scholar
  20. 20.
    Yi C, Zhao Z, Cai J, de Faria R-L, Zhang G-M (2016) Priority-aware pricing-based capacity sharing scheme for beyond-wireless body area networks. Comput Netw 98:29–43CrossRefGoogle Scholar
  21. 21.
    Kazemi R, Vesilo R, Dutkiewicz E, Liu R-P (2012) Reinforcement learning in power control games for internetwork interference mitigation in wireless body area networks. In: 2012 International Symposium on Communications and Information Technologies (ISCIT), Gold Coast, Australia, pp 256–262Google Scholar
  22. 22.
    Zhao X, Liu B, Chen C, Chen C-W (2015) QoS-driven power control for inter-WBAN interference mitigation. In: 2015 IEEE In Global Communications Conference (GLOBECOM), CA, USA, pp 1–6Google Scholar
  23. 23.
    Zhang Z, Wang H, Wang C, Fang H (2013) Interference mitigation for cyber-physical wireless body area network system using social networks. IEEE Trans Emerg Top Comput 1(1):121–132CrossRefGoogle Scholar
  24. 24.
    Wang J-X, Sun Y-M, Ji Y-F (2017) QoS-based adaptive power control scheme for co-located WBANs: a cooperative bargaining game theoretic perspective. Wirel Netw.
  25. 25.
    Yang C-G, Li J-D, Tian Z (2010) Optimal power control for cognitive radio networks under coupled interference constraints: a cooperative game-theoretic perspective. IEEE Trans Veh Technol 59(4):1696–1706CrossRefGoogle Scholar
  26. 26.
    Azimi S-M, Manshaei M-H, Hendessi F (2016) Cooperative primary-secondary dynamic spectrum leasing game via decentralized bargaining. Wirel Netw 22(3):755–764CrossRefGoogle Scholar
  27. 27.
    Zhang H, Jiang C, Beaulieu N-C, Chu X, Wang X, Quek T-Q (2015) Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Trans Wirel Commun 14(6):3481–3493CrossRefGoogle Scholar
  28. 28.
    Ni Q, Zarakovitis C-C (2012) Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems. IEEE J Sel Areas Commun 30(1):70–81CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Shi J, Chen H-H, Guizani M, Qiu P (2008) A cooperation strategy based on Nash bargaining solution in cooperative relay networks. IEEE Trans Veh Technol 57(4):2570–2577CrossRefGoogle Scholar
  30. 30.
    Zhang G, Zhang H, Zhao L, Wang W, Cong L (2009) Fair resource sharing for cooperative relay networks using Nash bargaining solutions. IEEE Commun Lett 13(6):381–383CrossRefGoogle Scholar
  31. 31.
    Han Z, Ji Z, Liu K-R (2005) Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions. IEEE Trans Commun 53(8):1366–1376CrossRefGoogle Scholar
  32. 32.
    Wang G, Liu T (2016) Resource allocation for M2M-enabled cellular network using Nash bargaining game theory. Peer-to-Peer Netw Appl 11(1):110–123CrossRefGoogle Scholar
  33. 33.
    Kim S (2016) Timed bargaining-based opportunistic routing model for dynamic vehicular ad hoc network. EURASIP J Wirel Commun Netw 2016(1):14CrossRefGoogle Scholar
  34. 34.
    Xu P, Fang X, Chen M, Xu Y (2013) A Stackelberg game-based spectrum allocation scheme in macro/femtocell hierarchical networks. Comput Commun 36(14):1552–1558CrossRefGoogle Scholar
  35. 35.
    Duong N-D, Madhukumar A-S, Niyato D (2016) Stackelberg Bayesian game for power allocation in two-tier networks. IEEE Trans Veh Technol 65(4):2341–2354CrossRefGoogle Scholar
  36. 36.
    Kang X, Zhang R, Motani M (2012) Price-based resource allocation for spectrum-sharing femtocell networks: a Stackelberg game approach. IEEE J Sel Areas Commun 30(3):538–549CrossRefGoogle Scholar
  37. 37.
    Ren S, Van der Schaar M (2011) Pricing and distributed power control in wireless relay networks. IEEE Trans Signal Process 59(6):2913–2926MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wang B, Han Z, Liu K-R (2009) Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game. IEEE Trans Mob Comput 8(7):975–990CrossRefGoogle Scholar
  39. 39.
    Cao Q, Zhao H-V, Jing Y (2012) Power allocation and pricing in multiuser relay networks using Stackelberg and bargaining games. IEEE Trans Veh Technol 61(7):3177–3190CrossRefGoogle Scholar
  40. 40.
    Kang X, Wu Y (2015) Incentive mechanism design for heterogeneous peer-to-peer networks: a Stackelberg game approach. IEEE Trans Mob Comput 14(5):1018–1030CrossRefGoogle Scholar
  41. 41.
    Sun S, Chen N, Ran T, Xiao J, Tian T (2016) A Stackelberg game spectrum sharing scheme in cognitive radio-based heterogeneous wireless sensor networks. Signal Process 126:18–26CrossRefGoogle Scholar
  42. 42.
    Xu Y, Mao S (2014) Stackelberg game for cognitive radio networks with MIMO and distributed interference alignment. IEEE Trans Veh Technol 63(2):879–892MathSciNetCrossRefGoogle Scholar
  43. 43.
    Maharjan S, Zhu Q, Zhang Y, Gjessing S, Basar T (2013) Dependable demand response management in the smart grid: a Stackelberg game approach. IEEE Trans Smart Grid 4(1):120–132CrossRefGoogle Scholar
  44. 44.
    Gong X-W, Duan L-J, Chen X, Zhang J-S (2017) When social network effect meets congestion effect in wireless networks: data usage equilibrium and optimal pricing. IEEE J Sel Areas Commun 35(2):449–462CrossRefGoogle Scholar
  45. 45.
    Han Z, Niyato D, Basar T, Saad W, Hjørungnes A (2012) Game theory in wireless and communication networks. Cambridge University Press, CambridgezbMATHGoogle Scholar
  46. 46.
    Nash J-F Jr (1950) The bargaining problem. Econometrica 18(2):155–162MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Yang C-G, Li J-D, Anpalagan A, Guizani M (2016) Joint power coordination for spectral-and-energy efficiency in heterogeneous small cell networks: a bargaining game-theoretic perspective. IEEE Trans Wirel Commun 15(2):1364–1376CrossRefGoogle Scholar
  48. 48.
    Abiodun A-S, Anisi M-H, Ali I, Akhunzada A, Khan M-K (2017) Reducing power consumption in wireless body area networks: a novel data segregation and classification technique. IEEE Consum Electron Mag 6(4):38–47CrossRefGoogle Scholar
  49. 49.
    Kelly F (1997) Charging and rate control for elastic traffic. Trans Emerg Telecommun Technol 8(1):33–37CrossRefGoogle Scholar
  50. 50.
    Moosavi H, Bui F-M (2016) Optimal beamforming-based power control in wireless body area networks. In: 2016 Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, USA, pp 1–5Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and Telecommunications (BUPT)BeijingChina

Personalised recommendations