Skip to main content

Advertisement

Log in

Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bilsky W, Borg I, Wetzels P (1994) Assessing conflict tactics in close relationships: a reanalysis of a research instrument. In: Hox JJ, Mellenbergh GJ, PG Swanborn (eds.) Facet Theory. Analysis and design, SETOS, Zeist, pp 39–46

  2. Borg I, Groenen PJ (2005) Modern multidimensional scaling: theory and applications. Springer, Berlin

    MATH  Google Scholar 

  3. Chapman B, Jost G, Pas Rvd (2007) Using OpenMP: portable shared memory parallel programming (scientific and engineering computation). The MIT Press, Cambridge

    Google Scholar 

  4. Clarke D, Ilic A, Lastovetsky A, Rychkov V, Sousa L, Zhong Z (2014) Design and optimization of scientific applications for highly heterogeneous and hierarchical HPC platforms using functional computation performance models. Wiley, Hoboken, pp 235–260

    Google Scholar 

  5. cuBLAS library (2017) http://docs.nvidia.com/cuda/cublas/index.html. Accessed 24 Feb 2018

  6. CUDA Pro Tip: Do The Kepler Shuffle (2017) https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/. Accessed 24 Feb 2018

  7. De Leeuw J (1977) Applications of convex analysis to multidimensional scaling. In: Recent developments in statistics, North Holland Publishing Company, pp 133–145

  8. Dzemyda G, Kurasova O, Žilinskas J (2013) Multidimensional data visualization: methods and applications, vol 75. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Dzwinel W, Blasiak J (1999) Method of particles in visual clustering of multi-dimensional and large data sets. Future Gener Comput Syst 15(3):365–379

    Article  Google Scholar 

  10. Escobar R, Boppana RV (2016) Performance prediction of parallel applications based on small-scale executions. In: 2016 IEEE 23rd HiPC, pp 362–371

  11. Fester T, Schreiber F, Strickert M (2009) CUDA-based multi-core implementation of MDS-based bioinformatics algorithms. In: Grosse I, Neumann S, Posch S, Schreiber F, Stadler PF (eds) GCB, LNI, vol 157. GI, Bonn, pp 67–79

    Google Scholar 

  12. Filatovas E, Podkopaev D, Kurasova O (2015) A visualization technique for accessing solution pool in interactive methods of multiobjective optimization. Int J Comput Commun Control 10:508–519

    Article  Google Scholar 

  13. Garzón EM, Moreno JJ, Martínez JA (2017) An approach to optimise the energy efficiency of iterative computation on integrated GPU–CPU systems. J Supercomput 73(1):114–125

    Article  Google Scholar 

  14. Goldberger J, Gordon S, Greenspan H (2003) An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. In: ICCV. IEEE Computer Society, pp 487–493

  15. Hout MC, Goldinger SD, Brady KJ (2014) MM-MDS: a multidimensional scaling database with similarity ratings for 240 object categories from the massive memory picture database. PLoS ONE 9(11):1–11

    Article  Google Scholar 

  16. Ingram S, Munzner T, Olano M (2009) Glimmer: multilevel MDS on the GPU. IEEE Trans Vis Comput Gr 15(2):249–261

    Article  Google Scholar 

  17. Intel Math Kernel Library (Documentation) (2017) https://software.intel.com/en-us/mkl/documentation. Accessed 24 Feb 2018

  18. Kurasova O, Petkus T, Filatovas E (2013) Visualization of pareto front points when solving multi-objective optimization problems. Inf Technol Control 42(4):353–361

    Google Scholar 

  19. Leng J et al (2013) GPUWattch: enabling energy optimizations in GPGPUs. SIGARCH Comput Archit News 41(3):487–498

    Article  Google Scholar 

  20. Martínez JA, Almeida F, Garzón EM, Acosta A, Blanco V (2011) Adaptive load balancing of iterative computation on heterogeneous nondedicated systems. J Supercomput 58(3):385–393. https://doi.org/10.1007/s11227-011-0595-3

    Article  Google Scholar 

  21. Martínez JA, Garzón EM, Plaza A, García I (2011) Automatic tuning of iterative computation on heterogeneous multiprocessors with ADITHE. J Supercomput 58(2):151–159

    Article  Google Scholar 

  22. Medvedev V, Kurasova O, Bernatavičienė J, Treigys P, Marcinkevičius V, Dzemyda G (2017) A new web-based solution for modelling data mining processes. Simul Model Pract Theory 76:34–46

    Article  MATH  Google Scholar 

  23. Morrison A, Ross G, Chalmers M (2003) Fast multidimensional scaling through sampling, springs and interpolation. Inf Vis 2(1):68–77

    Article  Google Scholar 

  24. Orts F, Filatovas E, Ortega G, Kurasova O, Garzón EM (2017) HPC tool for multidimensional scaling. In: Vigo-Aguiar J (ed) Proceedings of the 17th international conference on computational and mathematical methods in science and engineering, vol 5, pp 1611–1614

  25. Osipyan H, Morton A, Marchand-Maillet S (2014) Fast interactive information retrieval with sampling-based MDS on GPU architectures. In: Information retrieval facility conference. Springer, Cham, pp 96–107. ISBN: 978-3-319-12978-5

  26. Papenhausen E, Wang B, Ha S, Zelenyuk A, Imre D, Mueller K (2013) GPU-accelerated incremental correlation clustering of large data with visual feedback. In: Proceedings of the 2013 IEEE international conference on big data, 6–9 Oct 2013, Santa Clara, CA, USA, pp 63–70

  27. Park S, Shin SY, Hwang KB (2012) CFMDS: CUDA-based fast multidimensional scaling for genome-scale data. BMC Bioinform 13(17):S23

    Google Scholar 

  28. Pawliczek P, Dzwinel W, Yuen DA (2014) Visual exploration of data by using multidimensional scaling on multicore CPU, GPU, and MPI cluster. Concurr Comput 26(3):662–682

    Article  Google Scholar 

  29. Qiu J, Bae SH (2012) Performance of windows multicore systems on threading and MPI. Concurr Comput Pract Exp 24(1):14–28

    Article  Google Scholar 

  30. Shmoys DB, Tardos E (1993) An approximation algorithm for the generalized assignment problem. Math Program 62(3):461–474

    Article  MathSciNet  MATH  Google Scholar 

  31. Wong A, Rexachs D, Luque E (2015) Parallel application signature for performance analysis and prediction. IEEE Trans Parallel Distrib Syst 26(7):2009–2019

    Article  Google Scholar 

  32. Yang T, Liu J, McMillan L, Wang W (2006) A fast approximation to multidimensional scaling. In: IEEE workshop on computation intensive methods for computer vision

  33. Zhong Z, Rychkov V, Lastovetsky A (2014) Data partitioning on multicore and multi-GPU platforms using functional performance models. IEEE Trans Comput 64(9):2506–2518

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ortega.

Additional information

This work has been partially supported by the Spanish Ministry of Science throughout Projects TIN2015-66680 and CAPAP-H5 network TIN2014-53522, by J. Andalucía through Projects P12-TIC-301 and P11-TIC7176, by the European Regional Development Fund (ERDF), and by the European COST Action IC1305: Network for sustainable Ultrascale computing (NESUS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orts, F., Filatovas, E., Ortega, G. et al. Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures. J Supercomput 75, 1038–1050 (2019). https://doi.org/10.1007/s11227-018-2285-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2285-x

Keywords

Navigation