Disjunctive and Conjunctive Multiple-Conclusion Consequence Relations


Two different kinds of multiple-conclusion consequence relations taken from Shoesmith and Smiley (Multiple-conclusion logic, Cambridge University Press, Cambridge, 1978) and Galatos and Tsinakis (J Symb Logic 74:780–810, 2009) or Nowak (Bull Sect Logic 46:219–232, 2017), called here disjunctive and conjunctive, respectively, defined on a formal language, are considered. They are transferred into a bounded lattice and a complete lattice, respectively. The properties of such abstract consequence relations are presented.

This is a preview of subscription content, log in to check access.


  1. 1.

    Blyth, T.S., Lattices and Ordered Algebraic Structures, Springer, New York, 2005.

    Google Scholar 

  2. 2.

    Carnap, R., Formalization of Logic, Harvard University Press, Cambridge, 1943.

    Google Scholar 

  3. 3.

    Czelakowski, J., and G. Malinowski, Key notions of Tarski’s methodology of deductive systems, Studia Logica 44:321–351, 1985.

    Article  Google Scholar 

  4. 4.

    Denecke, K., M. Erné, and S.L. Wismath (eds.), Galois Connections and Applications, Kluwer, Alphen aan den Rijn, 2004.

    Google Scholar 

  5. 5.

    Domenach, F., and B. Leclerc, Biclosed binary relations and Galois connections, Order 18:89–104, 2001.

    Article  Google Scholar 

  6. 6.

    Erné, M., J. Koslowski, A. Melton, and G.E. Strecker, A Primer on Galois Connections, Annals of the New York Academy of Sciences 704:103–125, 1993.

    Article  Google Scholar 

  7. 7.

    Galatos, N., and C. Tsinakis, Equivalence of consequence relations: an order-theoretic and categorical perspective, Journal of Symbolic Logic 74:780–810, 2009.

    Article  Google Scholar 

  8. 8.

    Gentzen, G.K.E., Untersuchungen uber das logische Schliesen. I, Mathematische Zeitschrift 39:176–210, 1934. [English translation: Investigation into Logical Deduction, in M.E. Szabo, The collected Works of Gerhard Gentzen, North Holland, 1969, pp. 68–131.]

  9. 9.

    Hacking, I., What is logic?, The Journal of Philosophy 76:285–319, 1979.

    Article  Google Scholar 

  10. 10.

    Kneale, W., The province of logic, in H.P. Lewis (ed.), Contemporary British Philosophy, Allen and Unwin, Crows Nest, 1956, pp. 237–261.

    Google Scholar 

  11. 11.

    Nowak, M., A syntactic approach to closure operation, Bulletin of the Section of Logic 46:219–232, 2017.

    Article  Google Scholar 

  12. 12.

    Scott, D., Completeness and axiomatizability in many-valued logic, in Proceedings of Symposia in Pure Mathematics, vol. 25 (Proceedings of the Tarski Symposium), American Mathematical Society, Providence, 1974, pp. 411–435.

  13. 13.

    Shoesmith, D.J., and T.J. Smiley, Multiple-Conclusion Logic, Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  14. 14.

    Skura T., and A. Wiśniewski, A system for proper multiple-conclusion entailment, Logic and Logical Philosophy 24:241–253, 2015.

    Google Scholar 

  15. 15.

    Wójcicki, R., Theory of Logical Calculi. Basic Theory of Consequence Operations, Kluwer, Alphen aan den Rijn, 1988.

    Google Scholar 

  16. 16.

    Zygmunt J., An Essay in Matrix Semantics for Consequence Relations, Wydawnictwo Uniwersytetu Wrocławskiego, Wroclaw, 1984.

    Google Scholar 

Download references


I am very indebted to both anonymous referees for their useful hints changing essentially the first version of the text.

Author information



Corresponding author

Correspondence to Marek Nowak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Andrzej Indrzejczak

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nowak, M. Disjunctive and Conjunctive Multiple-Conclusion Consequence Relations. Stud Logica 108, 1125–1143 (2020). https://doi.org/10.1007/s11225-019-09889-8

Download citation


  • Closure operation
  • Closure system
  • Multiple-conclusion consequence relation
  • Galois connection