Advertisement

Arithmetical Soundness and Completeness for \(\varvec{\Sigma }_{\varvec{2}}\) Numerations

  • Taishi Kurahashi
Article

Abstract

We prove that for each recursively axiomatized consistent extension T of Peano Arithmetic and \(n \ge 2\), there exists a \(\Sigma _2\) numeration \(\tau (u)\) of T such that the provability logic of the provability predicate \(\mathsf{Pr}_\tau (x)\) naturally constructed from \(\tau (u)\) is exactly \(\mathsf{K}+ \Box (\Box ^n p \rightarrow p) \rightarrow \Box p\). This settles Sacchetti’s problem affirmatively.

Keywords

Provability logic Sacchetti’s logics Arithmetical completeness theorem Formalized arithmetic Numerations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 16K17653.

References

  1. 1.
    Beklemishev, L.D., On the classification of propositional provability logics. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 53(5):915–943, 1989. translated in Mathematics of the USSR-Izvestiya 35(2):247–275, 1990.Google Scholar
  2. 2.
    Boolos, G., The Logic of Provability. Cambridge University Press, Cambridge, 1993.Google Scholar
  3. 3.
    Chagrov, A., and M. Zakharyaschev, Modal Logic. Oxford Logic Guides: 35. Oxford Science Publications, 1997.Google Scholar
  4. 4.
    Feferman, S., Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae 49:35–92, 1960.CrossRefGoogle Scholar
  5. 5.
    Kurahashi, T., Arithmetical completeness theorem for modal logic K. Studia Logica 106(2):219–235, 2018.Google Scholar
  6. 6.
    Lindström, Per, Aspects of Incompleteness. Number 10 in Lecture Notes in Logic. A K Peters, 2nd edition, 2003.Google Scholar
  7. 7.
    Montagna, F., On the algebraization of a Feferman’s predicate. Studia Logica 37(3):221–236, 1978.CrossRefGoogle Scholar
  8. 8.
    Montague, R., Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability. Acta Philosophical Fennica 16:153–167, 1963.Google Scholar
  9. 9.
    Sacchetti, L., The fixed point property in modal logic. Notre Dame Journal of Formal Logic 42(2):65–86, 2001.CrossRefGoogle Scholar
  10. 10.
    Shavrukov, VY., A smart child of Peano’s. Notre Dame Journal of Formal Logic 35(2):161–185, 1994.CrossRefGoogle Scholar
  11. 11.
    Solovay, R. M., Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3–4):287–304, 1976.CrossRefGoogle Scholar
  12. 12.
    Visser, A., The provability logics of recursively enumerable theories extending Peano arithmetic at arbitrary theories extending Peano arithmetic. Journal of Philosophical Logic 13(2):181–212, 1984.CrossRefGoogle Scholar
  13. 13.
    Visser, A., Peano’s smart children: A provability logical study of systems with built-in consistency. Notre Dame Journal of Formal Logic 30(2):161–196, 1989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Natural ScienceNational Institute of Technology, Kisarazu CollegeKisarazuJapan

Personalised recommendations