Prediction of CO2 and H2 solubility, diffusion, and permeability in MFI zeolite by molecular dynamics simulation

Abstract

Molecular dynamics simulation has been employed to calculate the amounts of solubility, diffusion coefficient, and permeability for the pure and volumetric binary mixture of CO2 and H2 in MFI (Mobil-FIve) zeolite and the effect of pressure and temperature on the observed transport properties. It has been found that the amount of carbon dioxide adsorption is much more than the amount of hydrogen adsorption and MFI zeolite adsorbs higher amount of both gases with pressure enhancement and temperature reduction. The MSD (mean square displacement) value for the hydrogen is much higher than that of carbon dioxide. The variation of the diffusion coefficient of carbon dioxide and hydrogen gas with pressure does not obey a certain trend, but temperature enhancement has a direct effect on the diffusion coefficient of both gases. It is also noticeable that the diffusion coefficient of hydrogen molecules in the gaseous mixture is lower than that in pure state, and vice versa is true for carbon dioxide. The CO2 permeability decreases with increasing pressure, but H2 permeability is not affected by the pressure. The permeability of CO2 molecules decreases and the permeability of H2 molecules increases with increasing temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10a–
Fig. 11
Fig. 12
Fig. 13

Availability of data and material

Not applicable

Code availability

Not applicable

References

  1. 1.

    Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Wei Q, Fan M (2013). RSC Adv 3:22739–22773. https://doi.org/10.1039/C3RA43965H

    CAS  Article  Google Scholar 

  2. 2.

    Parry ML, (2007) Climate change 2007: impacts, adaptation and vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf

  3. 3.

    Leung DY, Caramanna G, Maroto-Valer MM (2014). Renew Sust Energy Rev 39:426–443. https://doi.org/10.1016/j.rser.2014.07.093

    CAS  Article  Google Scholar 

  4. 4.

    Cuéllar-Franca RM, Azapagic A (2015) J CO2 Util 9:82-102. https://doi.org/10.1016/j.jcou.2014.12.001

  5. 5.

    Al-Mamoori A, Krishnamurthy A, Rownaghi A, Rezaei F (2017). Energy Technol 5:834–849. https://doi.org/10.1002/ente.201600747

    Article  Google Scholar 

  6. 6.

    Naims H (2016). Environ Sci Pollut Res 23:22226–22241. https://doi.org/10.1007/s11356-016-6810-2

    CAS  Article  Google Scholar 

  7. 7.

    U. EIA, Energy Information Administration, US Department of Energy, Washington, DC, http://www. eia. doe. gov/emeu/aer, 2011. https://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf

  8. 8.

    Zhu Q (2019). Clean Energy 3:85–100. https://doi.org/10.1093/ce/zkz008

    Article  Google Scholar 

  9. 9.

    Scientific Advice Mechanism, Novel Carbon Capture and Utilisation Technologies, Directorate-General for Research and Innovation, European Commission, Brussels, 2018. https://ec.europa.eu/research/sam/pdf/sam_ccu_report.pdf

  10. 10.

    Cooney G, Littlefield J, Marriott J, Skone TJ (2015). Environ Sci Technol 49:7491–7500. https://doi.org/10.1021/acs.est.5b00700

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Dai Z, Middleton R, Viswanathan H, Fessenden-Rahn J, Bauman J, Pawar R, Lee SY, McPherson B (2014). Environ Sci Technol Lett 1:49–54. https://doi.org/10.1021/ez4001033

    CAS  Article  Google Scholar 

  12. 12.

    Blumberg T, Morosuk T, Tsatsaronis G (2017) Methanol production from natural gas – a comparative exergoeconomic evaluation of commercially applied synthesis routes, 5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS3) Nisyros, Greece. https://www.researchgate.net/publication/329239928

  13. 13.

    Cañete B, Gigola CE, Brignole NlB (2014) Ind Eng Chem Res 53:7103−7112. https://doi.org/10.1021/ie404425e

  14. 14.

    Meunier N, Chauvy R, Mouhoubi S, Thomas D, De Weireld G (2020). Renew Energy 146:1192–1203. https://doi.org/10.1016/j.renene.2019.07.010

    CAS  Article  Google Scholar 

  15. 15.

    Hedlund J, Sterte J, Anthonis M, Bons AJ, Carstensen B, Corcoran N, Cox D, Deckman H, De Gijnst W, de Moor PP (2002). Micropor Mesopro Mat 52:179–189. https://doi.org/10.1016/S1387-1811(02)00316-5

    CAS  Article  Google Scholar 

  16. 16.

    Korelskiy D, Ye P, Fouladvand S, Karimi S, Sjöberg E, Hedlund J (2015). J Mater Chem A 3:12500–12506. https://doi.org/10.1039/C5TA02152A

    CAS  Article  Google Scholar 

  17. 17.

    Lindmark J, Hedlund J (2010). J Mem Sci 360:284–291. https://doi.org/10.1016/j.memsci.2010.05.025

    CAS  Article  Google Scholar 

  18. 18.

    Lindmark J, Hedlund J, Wirawan SK, Creaser D, Li M, Zhang D, Zou X (2010). J Mem Sci 365:188–197. https://doi.org/10.1016/j.memsci.2010.09.006

    CAS  Article  Google Scholar 

  19. 19.

    Algieri C, Bernardo P, Golemme G, Barbieri G, Drioli E (2003). J Mem Sci 222:181–190. https://doi.org/10.1016/S0376-7388(03)00286-2

    CAS  Article  Google Scholar 

  20. 20.

    Wirawan SK, Creaser D (2006). Micropor Mesopor Mat 91:196–205. https://doi.org/10.1016/j.micromeso.2005.11.047

    CAS  Article  Google Scholar 

  21. 21.

    Sandström L, Sjöberg E, Hedlund J (2011) J Mem Sci 380:232– 240. https://doi.org/10.1016/j.memsci.2011.07.011

  22. 22.

    Pham TD, Xiong R, Sandler SI, Lobo RF (2014). Micropor Mesopor Mat 185:157–166. https://doi.org/10.1016/j.micromeso.2013.10.030

    CAS  Article  Google Scholar 

  23. 23.

    Ewald PP (1921). Ann Phys 64:253–287 http://garfield.library.upenn.edu/classics1985/A1985AUW1400001.pdf

    Article  Google Scholar 

  24. 24.

    Rappe AK, Casewit CJ, Colwell K, Goddard WA, Skiff WM (1992). J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040

    CAS  Article  Google Scholar 

  25. 25.

    Sun H (1998). J Phys Chem B 102:7338–7364. https://doi.org/10.1021/jp980939v

    CAS  Article  Google Scholar 

  26. 26.

    Sun H, Ren P, Fried J (1998). Comput Theor Polym Sci 8:229–246. https://doi.org/10.1016/S1089-3156(98)00042-7

    CAS  Article  Google Scholar 

  27. 27.

    Mayo SL, Olafson BD, Goddard WA (1990). J Phys Chem 94:8897–8909. https://doi.org/10.1021/j100389a010

    CAS  Article  Google Scholar 

  28. 28.

    Jackson D (1988). Ann Rep B (Org Chem) 85:17–25. https://doi.org/10.1039/OC9888500017

    CAS  Article  Google Scholar 

  29. 29.

    Hwang M, Stockfisch T, Hagler A (1994). J Am Chem Soc 116:2515–2525. https://doi.org/10.1021/ja00085a036

    CAS  Article  Google Scholar 

  30. 30.

    Heinz H, Koerner H, Anderson KL, Vaia RA, Farmer B (2005). Chem Mater 17:5658–5669. https://doi.org/10.1021/cm0509328

    CAS  Article  Google Scholar 

  31. 31.

    Haario H, Saksman E, Tamminen J (2001). Bernoulli 7:223–242 https://projecteuclid.org/euclid.bj/1080222083

    Article  Google Scholar 

  32. 32.

    Kuczera G, Parent E (1998). J Hydrol 211:69–85. https://doi.org/10.1016/S0022-1694(98)00198-X

    Article  Google Scholar 

  33. 33.

    Panagiotopoulos A (1992). Fluid Phase Equilib 76:97–112. https://doi.org/10.1016/0378-3812(92)85080-R

    CAS  Article  Google Scholar 

  34. 34.

    Fried J, Goyal D (1998). J Polym Sci B Polym Phys 36:519–536. https://doi.org/10.1002/(SICI)1099-0488(199802)36:3<519::AID-POLB13>3.0.CO;2-J

    CAS  Article  Google Scholar 

  35. 35.

    Kärger J, Ruthven DM (1992) Diffusion in Zeolites and Other Microporous Solids. Wiley, New York

    Google Scholar 

  36. 36.

    Keil FJ, Krishna R, Coppens MO (2000). Rev Chem Eng 16:71–197. https://doi.org/10.1515/REVCE.2000.16.2.71

    CAS  Article  Google Scholar 

  37. 37.

    Paul D (2004). J Mem Sci 241:371–386. https://doi.org/10.1016/j.memsci.2004.05.026

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the computer facilities provided by Shiraz University of Technology.

Author information

Affiliations

Authors

Contributions

Fatemeh Sabzi: conceptualization, supervisor, writing, and editing

Ardeshir Hassanzadeh: methodology, software, and investigation

Corresponding author

Correspondence to Fatemeh Sabzi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, A., Sabzi, F. Prediction of CO2 and H2 solubility, diffusion, and permeability in MFI zeolite by molecular dynamics simulation. Struct Chem (2021). https://doi.org/10.1007/s11224-021-01743-9

Download citation

Keywords

  • Molecular dynamics simulation
  • Solubility
  • Diffusion
  • Permeability
  • MFI zeolite