Prediction of CO2 and H2 solubility, diffusion, and permeability in MFI zeolite by molecular dynamics simulation


Molecular dynamics simulation has been employed to calculate the amounts of solubility, diffusion coefficient, and permeability for the pure and volumetric binary mixture of CO2 and H2 in MFI (Mobil-FIve) zeolite and the effect of pressure and temperature on the observed transport properties. It has been found that the amount of carbon dioxide adsorption is much more than the amount of hydrogen adsorption and MFI zeolite adsorbs higher amount of both gases with pressure enhancement and temperature reduction. The MSD (mean square displacement) value for the hydrogen is much higher than that of carbon dioxide. The variation of the diffusion coefficient of carbon dioxide and hydrogen gas with pressure does not obey a certain trend, but temperature enhancement has a direct effect on the diffusion coefficient of both gases. It is also noticeable that the diffusion coefficient of hydrogen molecules in the gaseous mixture is lower than that in pure state, and vice versa is true for carbon dioxide. The CO2 permeability decreases with increasing pressure, but H2 permeability is not affected by the pressure. The permeability of CO2 molecules decreases and the permeability of H2 molecules increases with increasing temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10a–
Fig. 11
Fig. 12
Fig. 13

Availability of data and material

Not applicable

Code availability

Not applicable


  1. 1.

    Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Wei Q, Fan M (2013). RSC Adv 3:22739–22773.

    CAS  Article  Google Scholar 

  2. 2.

    Parry ML, (2007) Climate change 2007: impacts, adaptation and vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press.

  3. 3.

    Leung DY, Caramanna G, Maroto-Valer MM (2014). Renew Sust Energy Rev 39:426–443.

    CAS  Article  Google Scholar 

  4. 4.

    Cuéllar-Franca RM, Azapagic A (2015) J CO2 Util 9:82-102.

  5. 5.

    Al-Mamoori A, Krishnamurthy A, Rownaghi A, Rezaei F (2017). Energy Technol 5:834–849.

    Article  Google Scholar 

  6. 6.

    Naims H (2016). Environ Sci Pollut Res 23:22226–22241.

    CAS  Article  Google Scholar 

  7. 7.

    U. EIA, Energy Information Administration, US Department of Energy, Washington, DC, http://www. eia. doe. gov/emeu/aer, 2011.

  8. 8.

    Zhu Q (2019). Clean Energy 3:85–100.

    Article  Google Scholar 

  9. 9.

    Scientific Advice Mechanism, Novel Carbon Capture and Utilisation Technologies, Directorate-General for Research and Innovation, European Commission, Brussels, 2018.

  10. 10.

    Cooney G, Littlefield J, Marriott J, Skone TJ (2015). Environ Sci Technol 49:7491–7500.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Dai Z, Middleton R, Viswanathan H, Fessenden-Rahn J, Bauman J, Pawar R, Lee SY, McPherson B (2014). Environ Sci Technol Lett 1:49–54.

    CAS  Article  Google Scholar 

  12. 12.

    Blumberg T, Morosuk T, Tsatsaronis G (2017) Methanol production from natural gas – a comparative exergoeconomic evaluation of commercially applied synthesis routes, 5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS3) Nisyros, Greece.

  13. 13.

    Cañete B, Gigola CE, Brignole NlB (2014) Ind Eng Chem Res 53:7103−7112.

  14. 14.

    Meunier N, Chauvy R, Mouhoubi S, Thomas D, De Weireld G (2020). Renew Energy 146:1192–1203.

    CAS  Article  Google Scholar 

  15. 15.

    Hedlund J, Sterte J, Anthonis M, Bons AJ, Carstensen B, Corcoran N, Cox D, Deckman H, De Gijnst W, de Moor PP (2002). Micropor Mesopro Mat 52:179–189.

    CAS  Article  Google Scholar 

  16. 16.

    Korelskiy D, Ye P, Fouladvand S, Karimi S, Sjöberg E, Hedlund J (2015). J Mater Chem A 3:12500–12506.

    CAS  Article  Google Scholar 

  17. 17.

    Lindmark J, Hedlund J (2010). J Mem Sci 360:284–291.

    CAS  Article  Google Scholar 

  18. 18.

    Lindmark J, Hedlund J, Wirawan SK, Creaser D, Li M, Zhang D, Zou X (2010). J Mem Sci 365:188–197.

    CAS  Article  Google Scholar 

  19. 19.

    Algieri C, Bernardo P, Golemme G, Barbieri G, Drioli E (2003). J Mem Sci 222:181–190.

    CAS  Article  Google Scholar 

  20. 20.

    Wirawan SK, Creaser D (2006). Micropor Mesopor Mat 91:196–205.

    CAS  Article  Google Scholar 

  21. 21.

    Sandström L, Sjöberg E, Hedlund J (2011) J Mem Sci 380:232– 240.

  22. 22.

    Pham TD, Xiong R, Sandler SI, Lobo RF (2014). Micropor Mesopor Mat 185:157–166.

    CAS  Article  Google Scholar 

  23. 23.

    Ewald PP (1921). Ann Phys 64:253–287

    Article  Google Scholar 

  24. 24.

    Rappe AK, Casewit CJ, Colwell K, Goddard WA, Skiff WM (1992). J Am Chem Soc 114:10024–10035.

    CAS  Article  Google Scholar 

  25. 25.

    Sun H (1998). J Phys Chem B 102:7338–7364.

    CAS  Article  Google Scholar 

  26. 26.

    Sun H, Ren P, Fried J (1998). Comput Theor Polym Sci 8:229–246.

    CAS  Article  Google Scholar 

  27. 27.

    Mayo SL, Olafson BD, Goddard WA (1990). J Phys Chem 94:8897–8909.

    CAS  Article  Google Scholar 

  28. 28.

    Jackson D (1988). Ann Rep B (Org Chem) 85:17–25.

    CAS  Article  Google Scholar 

  29. 29.

    Hwang M, Stockfisch T, Hagler A (1994). J Am Chem Soc 116:2515–2525.

    CAS  Article  Google Scholar 

  30. 30.

    Heinz H, Koerner H, Anderson KL, Vaia RA, Farmer B (2005). Chem Mater 17:5658–5669.

    CAS  Article  Google Scholar 

  31. 31.

    Haario H, Saksman E, Tamminen J (2001). Bernoulli 7:223–242

    Article  Google Scholar 

  32. 32.

    Kuczera G, Parent E (1998). J Hydrol 211:69–85.

    Article  Google Scholar 

  33. 33.

    Panagiotopoulos A (1992). Fluid Phase Equilib 76:97–112.

    CAS  Article  Google Scholar 

  34. 34.

    Fried J, Goyal D (1998). J Polym Sci B Polym Phys 36:519–536.<519::AID-POLB13>3.0.CO;2-J

    CAS  Article  Google Scholar 

  35. 35.

    Kärger J, Ruthven DM (1992) Diffusion in Zeolites and Other Microporous Solids. Wiley, New York

    Google Scholar 

  36. 36.

    Keil FJ, Krishna R, Coppens MO (2000). Rev Chem Eng 16:71–197.

    CAS  Article  Google Scholar 

  37. 37.

    Paul D (2004). J Mem Sci 241:371–386.

    CAS  Article  Google Scholar 

Download references


The authors wish to thank the computer facilities provided by Shiraz University of Technology.

Author information




Fatemeh Sabzi: conceptualization, supervisor, writing, and editing

Ardeshir Hassanzadeh: methodology, software, and investigation

Corresponding author

Correspondence to Fatemeh Sabzi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, A., Sabzi, F. Prediction of CO2 and H2 solubility, diffusion, and permeability in MFI zeolite by molecular dynamics simulation. Struct Chem (2021).

Download citation


  • Molecular dynamics simulation
  • Solubility
  • Diffusion
  • Permeability
  • MFI zeolite