Calculated IR absorption spectra for perfluoroalkyl and polyfluoroalkyl (PFAS) molecules


We calculate with density functional theory (DFT) the IR spectra of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in water. The specific PFAS molecules studied are C4F8-SO2, C4F9-OH, C4F9-O-C2H5, C2F6CH2-SO3, and C8F17-SO3. The IR calculations can be usefully compared with experimentally measured IR spectra for the same molecules. Calculated IR spectra will be used as a basis for detection of contaminants, and for interpretation of experimental spectra of contaminants. The DFT-IR calculations presented here are implemented using the commercial computer program Gaussian.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Not applicable


  1. 1.

    Haaland DM (1990) Multivariate calibration methods applied to quantitative FT-IR analyses, Chapter 8, Practical Fourier transform infrared spectroscopy. Ferraro J.R. and Krishnan K., Academic Press, Inc., San Diego, CA, Editors

    Google Scholar 

  2. 2.

    Lam RB (1983) On the relationship of least squares to cross-correlation quantitative spectral analysis. Appl Spectrosc 37:567–569

    CAS  Article  Google Scholar 

  3. 3.

    Brown SD (1986) The Kalman filter in analytical chemistry. Anal Chim Acta 181:1–26

    CAS  Article  Google Scholar 

  4. 4.

    Cooper WS (1986) Use of optimal estimation theory-in particular the Kalman filter-in data analysis and signal processing. Rev Sci Instrum 57(11):2862–2869

    CAS  Article  Google Scholar 

  5. 5.

    Mann CK, Goleniewski JR, Sismanidis CA (1982) Spectrophotometric analysis by cross-correlation. Appl Spectrosc 36:223–227

    CAS  Article  Google Scholar 

  6. 6.

    Mann CK, Vickers TJ (1986) Signal enhancement by data domain averaging. Appl Spectrosc 40(4):525–531

    CAS  Article  Google Scholar 

  7. 7.

    Harrick NJ (1967) Internal Reflection Spectroscopy. Interscience Publishers, New York

    Google Scholar 

  8. 8.

    Griffiths PR, Christopher CC (2002) Handbook of Vibrational Spectroscopy. John Wiley & Sons, New York

    Google Scholar 

  9. 9.

    Huang L, Lambrakos SG, Shabaev A, Bernstein N, Massa L (2015) Molecular analysis of water clusters: calculation of the cluster structures and vibrational spectrum using density functional theory. Comptes Rendus Chimie 18(5):516–524 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    Lee M, Lambrakos S, Yapijakis C, Huang L, Ramsey S, Shabaev A, Massa L, Peak J (2014) Issues Concerning spectral analysis of public water resources. Journal of Water Science and technology, IWA publishing 69(11):2364–2371

    CAS  Article  Google Scholar 

  11. 11.

    Huang L., Lambrakos S.G., Massa L., “IR absorption spectra for chlorinated ethanes in water using density functional theory,” Multiscale and multidisciplinary modeling, experiments and design, Volume 2, Issue 3, September 2019, pp. 175-183 (2019).

  12. 12.

    Wallace S, Lambrakos SG, Massa L (2019) Density function theory (DFT) calculated infrared absorption spectra for nitrosamines. Water Sci Technol 80(10):1967–1974

    CAS  Article  Google Scholar 

  13. 13.

    Espana V.A., Mallavarapu M., and Naidu R., “Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing.” Environ Technol Innov. 4, 168 to 181 (2015).

  14. 14.

    Backe W.J., Day T.C., and Field J.A., “Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS.” Environ Sci Technol47, 5226 to 5234 (2013).

  15. 15.

    Buck R.C., Franklin J., Berger U., Conder J.M., de Voogt P., Jensen A.A., Kannan K., Mabury S.A., and van Leeuwen S.P., “Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins.” Integr Environ Assess Manag. 7 (4), pp. 513 to 541 (2011).

  16. 16.

    Houtz E.F., and Sedlak D.L., “Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff.” Environ Sci Technol. 46 (17), pp. 9342 to 9349 (2012).

  17. 17.

    Oliaei F., Krien D., Weber R., and Watson A., “PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA).” Environ Sci Pollut Res. 20 (4), pp. 1977 to 1992 (2013).

  18. 18.

    Kupryianchyk D., Hale S.E., Breedveld G.D., and Cornelissen G., “Treatment of sites contaminated with perfluorinated compounds using biochar amendment.” Chemosphere. 142, pp. 35 to 40 (2016).

  19. 19.

    Liu J., and Mejia Avendano S., “Microbial degradation of polyfluoroalkyl chemicals in the environment: a review.” Environ Int. 61, pp. 98 to 114 (2013).

  20. 20.

    Place B.J., and Field J.A., “Identification of novel fluorochemicals in aqueous film-forming foams (AFFF) used by the US military.” Environ Sci Technol. 46 (13), pp. 7120 to 7127 (2012).

  21. 21.

    Post G.B., Cohn P.D., and Cooper K.R., “Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature.” Environ Res. 116, pp. 93 to 117 (2012).

  22. 22.

    Vecitis C.D., Park H., Cheng J., and Made B.T., “Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA).” Frontiers of Environmental Science & Engineering in China. Volume 3(2), pp. 129 to 151 (2009).

  23. 23.

    Vierke L., Staude C., Biegel-Engler A., Drost W., and Schult C., “Perfluorooctanoic acid (PFOA) - main concerns and regulatory developments in Europe from an environmental point of view.” Environmental Sciences Europe. Volume 24 (16), (2012).

  24. 24.

    Frisch M. J., Trucks G. W., Schlegel H.B., et. al., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, (2009).

  25. 25.

    Polkosnik W, Massa L (2017) Single determinant N-representability and the kernel energy method applied to water clusters. JCC 39(17):1038–1043

    Google Scholar 

  26. 26.

    Frisch A., Frisch M.J, Clemente F. R., and Trucks G. W., Gaussian 09 User’s Reference, Gaussian Inc., p, 105-106 (2009), online:

  27. 27.

    Hohenberg P, Kohn W (1964) Inhomogeneous Electron Gas. Phys Rev 136:B864

    Article  Google Scholar 

  28. 28.

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  29. 29.

    Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev ModPhys 61:689

    CAS  Google Scholar 

  30. 30.

    Martin R.M., Electronic structures basic theory and practical methods, Cambridge University Press, Cambridge, p. 2 (2004).

  31. 31.

    Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  32. 32.

    Ochterski J.W., “Vibrational analysis in Gaussian,”, (1999).

  33. 33.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  34. 34.

    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    CAS  Article  Google Scholar 

  35. 35.

    McLean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J Chem Phys 72:5639–5648

    CAS  Article  Google Scholar 

  36. 36.

    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis-sets for anion calculations, 3., the 3-21+G basis set for 1st-row elements, Li-F. J Comput Chem 4:294–301

    CAS  Article  Google Scholar 

  37. 37.

    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    CAS  Article  Google Scholar 

  38. 38.

    Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

  39. 39.

    Schriver L, Schriver A, Pehl S, Schrems O (1991) Hydrogen-bonded complexes of perfluoro-t-butanol with acetone and nitromethane in low temperature solutions and matrices. Can J Chem 69:1520

    CAS  Article  Google Scholar 

  40. 40.

    Smith SW (1997) The scientist and engineer’s guide to digital signal processing, chapter 7: properties of convolution. California Technical Publishing, San Diego, CA, Correlation

    Google Scholar 

  41. 41.

    Smith, s.w. The scientist and engineer’s guide to digital signal processing, chapter 3: the sampling theorem, California Technical Publishing, San Diego, CA (1997).

Download references

Code availability

Not applicable


Funding for this project was provided by the Office of Naval Research (ONR) through the Naval Research Laboratory’s Basic Research Program.

Author information




All authors, Sonjae Wallce, Samuel Lambrakos, Andrew Shabaev, & Lou Massa, contributed equally.

Corresponding author

Correspondence to Lou Massa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wallace, S., Lambrakos, S., Shabaev, A. et al. Calculated IR absorption spectra for perfluoroalkyl and polyfluoroalkyl (PFAS) molecules. Struct Chem (2021).

Download citation


  • DFT-IR spectra
  • PFAS infrared spectra
  • IR detection of contaminants
  • IR spectral database
  • Computer program Gaussian