Generation and trapping of non-aromatic cycloimines via diazotization/dediazotization of N-amino cyclic amines: theoretical and experimental results

Abstract

A theoretical investigation of the model diazotization/dediazotization of N-aminopiperidine and N-aminomorpholine at the DFT (B3LYP/6-31+G(d)) level indicated that the corresponding cycloimines can be generated transiently, which can be trapped with dimethyl acetylenedicarboxylate (DMAD) to form a 1,4-dipole followed by cycloaddition of the latter with a second molecule of DMAD to give the corresponding pyrido-annelated products. All steps have low activation free energy barriers and are thermodynamically favoured. Based on the theoretical results, we carried out successfully diazotization of N-amino cyclic amines, namely N-aminopiperidine, 4-aminomorpholine and 1-amino-4-methylpiperazine with tert.-butyl nitrite followed by dediazotization to generate transiently the corresponding cycloimines, which could be trapped with dimethyl acetylenedicarboxylate. to afford new annelated pyridine derivatives, namely tetramethyl 9H-5,6,7,8-tetrahydroquinolizine-1,2,3,4-tetracarboxylate, tetramethyl 5,6,8,9-tetrahydropyrido[2,1-c][1,4]oxazine-1,2,3,4-tetracarboxylate and tetramethyl 9H-5,6,7,8-tetrahydro-7-methylpyrido[1,2-a]pyrazine-1,2,3,4-tetracarboxylate which were duly characterized.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4

References

  1. 1.

    Diels O, Alder K (1932). Justus Liebigs Ann Chem 498:16

    Article  Google Scholar 

  2. 2.

    Acheson RM, Taylor GA (1960). J Chem Soc 1691

  3. 3.

    Acheson RM, Gagan JMF, Taylor GA (1963). J Chem Soc 1903

  4. 4.

    Acheson RM, Wollard J (1975). J Chem Soc Perkin Trans 1:438

    Article  Google Scholar 

  5. 5.

    Huisgen R, Herbig K (1965). Liebigs Ann Chem 688:98

    CAS  Article  Google Scholar 

  6. 6.

    Huisgen R, Morikawa M, Herbig K, Brunn E (1967). Chem Ber 100:1094

    CAS  Article  Google Scholar 

  7. 7.

    Nair V, Deepthi A, Ashok D, Raveendran AE, Paul RR (2014). Tetrahedron 70:3085

    CAS  Article  Google Scholar 

  8. 8.

    Staudinger H, Klever HW, Kober P (1910). Justus Liebigs Ann Chem 374:1

    CAS  Article  Google Scholar 

  9. 9.

    Ghosez A, de Perez C (1971). Angew Chem Int Ed Eng 10:184

    CAS  Article  Google Scholar 

  10. 10.

    Winterfeldt E, Naumann A (1965). Chem Ber 98:3537

    CAS  Article  Google Scholar 

  11. 11.

    Acheson RM, Hodgson SJ, Wright RGM (1976). J Chem Soc Perkin Trans 1:1911

    Article  Google Scholar 

  12. 12.

    Nair V, Shreekanth AR, Abhilash N, Bhadbhade MM, Gonnade RC (2002). Org Lett 4:3575

    Article  PubMed  Google Scholar 

  13. 13.

    Nair V, Shreekanth AR, Biju AT, Nigam PR (2003). Tetrahedron Lett 44:729

    CAS  Article  Google Scholar 

  14. 14.

    Mironov MA, Mokrushin VS, Maltsev SS (2003). Synlett:943

  15. 15.

    Nair V, Devi RB, Varma RL (2005). Tetrahedron Lett 46:5333

    CAS  Article  Google Scholar 

  16. 16.

    Nair V, Devipriya S, Suresh E (2007). Tetrahedron Lett 48:3667

    CAS  Article  Google Scholar 

  17. 17.

    Nair V, Devipriya S, Suresh E (2008). Tetrahedron 64:3567

    CAS  Article  Google Scholar 

  18. 18.

    Nair V, Devipriya S, Suresh E (2008). Synthesis:1065

  19. 19.

    Terzidis MA, Stephanidou-Stephanidou J, Tsoleridis CA (2009). Tetrahedron Lett 50:1196

    CAS  Article  Google Scholar 

  20. 20.

    Acheson RM, Foxton MW, Miller GR (1965). J Chem Soc 3200

  21. 21.

    Abhilash N, Devi BR, Suresh E, Nair V (2007). Tetrahedron 48:4391

    Article  Google Scholar 

  22. 22.

    Nair V, Devi BR, Abhilash N, Paul RR (2007). Heterocycles 73:249

    CAS  Article  Google Scholar 

  23. 23.

    Adib M, Sheibani E, Mostofi M, Ghanbary K, Bijanzadeh HR (2006). Tetrahedron 62:3435

    CAS  Article  Google Scholar 

  24. 24.

    Li M, Pan L, Wen LR (2011). Helv Chim Acta 94:169

    CAS  Article  Google Scholar 

  25. 25.

    Kessler H, Möhrle H, Zimmermaan G (1977). J Organomet Chem 42:66

    CAS  Article  Google Scholar 

  26. 26.

    Shvekhgeimer MGA (1998). Russ Chem Rev 67:1031

    Article  Google Scholar 

  27. 27.

    Patni M, Gupta R, Kotikalapudi R, Kumaraswamy KC, Bansal RK (2013). Tetrahedron Lett 54:2283

    Article  Google Scholar 

  28. 28.

    Falvey DE (2004) In: Moss RA, Platz MS, Jones Jr M (eds) Nitrenium ions in reactive intermediate chemistry. Wiley-Interscience, Hoboken, pp 593–649

    Google Scholar 

  29. 29.

    Amano Y, Nishiyama S (2006). Tetrahedron Lett 47:6505

    CAS  Article  Google Scholar 

  30. 30.

    Shono T, Hamaguchi H, Matsumura Y (1975). J Am Chem Soc 97:4264

    CAS  Article  Google Scholar 

  31. 31.

    Gaussian 16, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  32. 32.

    Gonzalez C, Schlegel HB (1989). J Chem Phys 90:2154

    CAS  Article  Google Scholar 

  33. 33.

    Gonzalez C, Weinhold F (1990). J Chem Phys 94:5523

    CAS  Article  Google Scholar 

  34. 34.

    Li P, Jia X (2017). Synthesis 49:711

    Google Scholar 

  35. 35.

    Chakraborty A, Jana S, Kibriya G, Dey A, Hajra A (2013). RSC Adv 1

  36. 36.

    Crisóstomo FP, Martín T, Carrillo R (2014). Angew Chem Int Ed 53:2181

    Article  Google Scholar 

  37. 37.

    Qiu D, Meng H, Jin L, Wang S, Tang SG, Wang X, Mo FY, Zhang Y, Wang JB (2013). Angew Chem Int Ed 52:11581

    CAS  Article  Google Scholar 

  38. 38.

    Huisgen R (1968). J Organomet Chem 33:2291

    Article  Google Scholar 

  39. 39.

    Zhou D (2019). J Phys Org Chem 32:e4035. https://doi.org/10.1002/poc.4035

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the authorities of the IIS (deemed to be University), Jaipur (India) for providing research facilities. We thank the anonymous reviewer for giving valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raj K. Bansal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Author agreement

All authors have read and approved to submit it to your journal. This paper has not been submitted elsewhere for consideration of publication.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

The IR, and 1H NMR spectra of the products; total energies of all the species in the gas phase (Table S1), and Cartesian coordinates of the optimized species at the B3LYP/6-31+G* level (Table S2). Supplementary data related to this article can be found at http://-------. (DOCX 2300 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ojha, M., Bansal, R.K. Generation and trapping of non-aromatic cycloimines via diazotization/dediazotization of N-amino cyclic amines: theoretical and experimental results. Struct Chem (2020). https://doi.org/10.1007/s11224-020-01567-z

Download citation

Keywords

  • 1,4-Dipoles
  • Annelated pyridines
  • Tetramethyl 9H-5,6,7,8-tetrahydroquinolizine-1,2,3,4-tetracarboxylate
  • Tetramethyl 5,6,8,9-tetrahydropyrido[2,1-c][1,4]oxazine-1,2,3,4-tetracarboxylate
  • Tetramethyl 9H-5,6,7,8-tetrahydro-7-methylpyrido[1,2-a]pyrazine-1,2,3,4-tetracarboxylate
  • DFT calculations