Skip to main content
Log in

Structural investigation of group 10 metal complexes with thiosemicarbazone: crystal structure, mass spectrometry, Hirshfeld surface and in vitro antitumor activity

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The current work reports the synthesis and structural investigation of three novel complexes with 2-acetyl-pyridine-N(4)-phenylthiosemicarbazone (HL1), [Ni(L1)Cl] (1), [Pd(L1)Cl] (2) and [Pt(L1)PPh3]Cl•2MeOH (3). The compounds were structurally characterized by means of single-crystal X-ray crystallography and spectroscopic techniques. All three complexes exhibit tetracoordinated metal centers in a square planar fashion with the thiosemicarbazone acting as a tridentate NNS-donor atoms. Intermolecular hydrogen bonds and π···π stacking interactions, building supramolecular assemblies in the complexes, were analyzed using the Hirshfeld surface. Mass spectrometry data showed the presence in solution of the characteristic fragmentation with the [M+H]+ molecular ion for all complexes. The thermochemical data, estimated by computational chemistry, allowed elucidate the relative intensity of the peaks present in the mass spectrum of the compounds investigated. The antitumor activity and selectivity of the free thiosemicarbazone ligand and their M(II) complexes (M = Ni, Pd, Pt) were evaluated against MCF-7, PBMC, and healthy cells. All compounds studied showed the death of cancer cells observing a great selectivity for the Ni(II) complex.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Donepudi M, Kondapalli K, Amos S et al (2014) Breast cancer statistics and markers. J Cancer Res Ther 10:506–511

    PubMed  Google Scholar 

  2. Bramati A, Girelli S, Torri V et al (2014) Efficacy of biological agents in metastatic triple-negative breast cancer. Cancer Treat Rev 40:605–613

    Article  CAS  PubMed  Google Scholar 

  3. Esteva FJ, Hubbard-Lucey VM, Tang J et al (2019) Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol 20:e175–e186

    Article  CAS  PubMed  Google Scholar 

  4. Haas BK, Osborne CRC, Vukelja SJ et al (2019) Effect of exercise during adjuvant chemotherapy for breast cancer. J Clin Oncol 37:6524–6524

    Article  Google Scholar 

  5. Lee G, Yang E, Kim S et al (2018) Parapheromones suppress chemotherapy side effects. J Pharmacol Exp Ther 367:215–221

    Article  CAS  PubMed  Google Scholar 

  6. Liu C, Li H, Wang K et al (2019) Identifying the antiproliferative effect of Astragalus polysaccharides on breast cancer: coupling network pharmacology with targetable screening from the Cancer Genome Atlas. Front Oncol 9:1–16

    Article  Google Scholar 

  7. Acharya R, Chacko S, Bose P et al (2019) Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci Rep 9:15743–15756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mosquillo MF, Bilbao L, Hernandez F et al (2018) Effect of a new anti-T. cruzi metallic compound based on palladium. Biometals 31:961–974

    Article  CAS  PubMed  Google Scholar 

  9. Bjelosevic H, Guzei IA, Spencer LC et al (2012) Platinum(II) and gold(I) complexes based on 1,1′-bis(diphenylphosphino)metallocene derivatives: synthesis, characterization and biological activity of the gold complexes. J Organomet Chem 720:52–59

    Article  CAS  Google Scholar 

  10. Rogolino D, Gatti A, Carcelli M et al (2017) Thiosemicarbazone scaffold for the design of antifungal and antiaflatoxigenic agents: evaluation of ligands and related copper complexes. Sci Rep 7:11214–11226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Palanimuthu D, Poon R, Sahni S et al (2017) A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur J Med Chem 139:612–632

    Article  CAS  PubMed  Google Scholar 

  12. Geersing A, Ségaud N, van der Wijst MGP et al (2018) Importance of metal-ion exchange for the biological activity of coordination complexes of the biomimetic ligand N4Py. Inorg Chem 57:7748–7756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lopes Ede O, Oliveira CG, Silva PB et al (2016) Novel zinc(II) complexes [Zn(atc-Et)(2)] and [Zn(atc-Ph)(2)]: in vitro and in vivo antiproliferative studies. Int J Mol Sci 17:781–779

    Article  CAS  Google Scholar 

  14. Sutradhar M, Barman TR, Rentschler E (2014) Coordination versatility of 1,5-bis(salicylidene)carbohydrazide in Ni(II) complexes. Inorg Chem Commun 39:140–143

    Article  CAS  Google Scholar 

  15. Almeida CM, Nascimento GP, Magalhães KG et al (2018) Crystal structures, DNA-binding ability and influence on cellular viability of gold(I) complexes of thiosemicarbazones. J Coord Chem 71:502–519

    Article  CAS  Google Scholar 

  16. Beraldo H, Gambino D (2004) The wide pharmacological versatility of semicarbazones, thiosemicarbozones and their metal complexes. Mini-Rev Med Chem 4:31–39

    Article  CAS  PubMed  Google Scholar 

  17. Scarim CB, Jornada DH, Machado MGM et al (2019) Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem 162:378–395

    Article  CAS  PubMed  Google Scholar 

  18. Shanmugapriya A, Dallemer F, Prabhakaran R (2018) Synthesis, characterisation, crystal structures and biological studies of palladium(ii) complexes containing 5-(2-hydroxy-3-methoxy-phenyl)-2,4-dihydro[1,2,4]triazole-3-thione derivatives. New J Chem 42:18850–18864

    Article  CAS  Google Scholar 

  19. de Siqueira LRP, de Moraes Gomes PAT, de Lima Ferreira LP et al (2019) Multi-target compounds acting in cancer progression: focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur J Med Chem 170:237–260

    Article  PubMed  CAS  Google Scholar 

  20. Bisceglie F, Pinelli S, Alinovi R et al (2014) Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: A study to understand their biological activity. J Inorg Biochem 140:111–125

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira CG, Romero-Canelón I, Silva MM et al (2019) Palladium(ii) complexes with thiosemicarbazones derived from pyrene as topoisomerase IB inhibitors. Dalton Trans 48:16509–16517

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y-H, Li A, Shao J et al (2016) Four Cu(ii) complexes based on antitumor chelators: synthesis, structure, DNA binding/damage, HSA interaction and enhanced cytotoxicity. Dalton Trans 45:8036–8049

    Article  CAS  PubMed  Google Scholar 

  23. Sprauten M, Darrah TH, Peterson DR et al (2012) Impact of long-term serum platinum concentrations on neuro- and ototoxicity in cisplatin-treated survivors of testicular cancer. J Clin Oncol 30:300–307

    Article  CAS  PubMed  Google Scholar 

  24. Bermejo E, Castiñeiras A, Domínguez R et al (1999) Preparation, structural characterization, and antifungal activities of complexes of group 12 metals with 2-acetylpyridine- and 2-acetylpyridine-N-oxide-4N-phenylthiosemicarbazones. Z Anorg Allg Chem 625:961–968

    Article  CAS  Google Scholar 

  25. SAINT. IMWSa (1999) Area detector control integration software. Bruker Analytical X-ray Instruments, Inc, Karlsruhe

    Google Scholar 

  26. Sheldrick GM (1997) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, Germany, Göttingen

    Google Scholar 

  27. Sheldrick G (2015) SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv 71:3–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Struct Chem 71:3–8

    Article  CAS  Google Scholar 

  29. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  30. Turner MJ MJ, Wolff SK, et al (2017) CrystalExplorer17

  31. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B: Struct Sci 60:627–668

    Article  CAS  Google Scholar 

  32. Spackman M, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  34. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554–8560

    Article  CAS  Google Scholar 

  35. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16 Rev. C.01, Wallingford

  37. Honorio-França AC, Hara CCP, Ormonde JVS et al (2013) Human colostrum melatonin exhibits a day-night variation and modulates the activity of colostral phagocytes. J Appl Biomed 11:153–162

    Article  CAS  Google Scholar 

  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  39. de Osti R, Fabiana D, Serrano A et al (2012) The in vitro and in vivo antitumour activities of nitrosyl ruthenium amine complexes. Aust J Chem 65:1333–1341

    Article  CAS  Google Scholar 

  40. Kovala-Demertzi D, Varagi V, Demertzis MA et al (1996) 2-Acetylpyridinium 4N-Phenylthiosemicarbazone chloride 1.25-hydrate. Acta Crystallogr C Struct Chem 52:2027–2029

    Article  Google Scholar 

  41. Piri Z, Moradi-Shoeili Z, Assoud A (2019) Ultrasonic assisted synthesis, crystallographic, spectroscopic studies and biological activity of three new Zn(II), Co(II) and Ni(II) thiosemicarbazone complexes as precursors for nano-metal oxides. Inorg Chim Acta 484:338–346

    Article  CAS  Google Scholar 

  42. PIdS M, Graminha A, Pavan FR et al (2010) Palladium(II) complexes with thiosemicarbazones: syntheses, characterization and cytotoxicity against breast cancer cells and Anti-Mycobacterium tuberculosis activity. J Braz Chem Soc 21:1177–1186

    Article  Google Scholar 

  43. Okuniewski A, Rosiak D, Chojnacki J et al (2015) Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 90:47–57

    Article  CAS  Google Scholar 

  44. Indoria S, Lobana TS, Singh D et al (2015) Stabilization of CuII–I bonds using 2-benzoylpyridine thiosemicarbazones – synthesis, structure, spectroscopy, fluorescence, and cyclic voltammetry. Eur J Inorg Chem 2015:5106–5117

    Article  CAS  Google Scholar 

  45. Ferraz KSO, Da Silva JG, Costa FM et al (2013) N(4)-Tolyl-2-acetylpyridine thiosemicarbazones and their platinum(II,IV) and gold(III) complexes: cytotoxicity against human glioma cells and studies on the mode of action. BioMetals 26:677–691

    Article  CAS  PubMed  Google Scholar 

  46. Rebolledo AP, Vieites M, Gambino D et al (2005) Palladium(II) complexes of 2-benzoylpyridine-derived thiosemicarbazones: spectral characterization, structural studies and cytotoxic activity. J Inorg Biochem 99:698–706

    Article  CAS  PubMed  Google Scholar 

  47. Suni V, Kurup MRP, Nethaji M (2007) Structural and spectral investigations on some new Ni(II) complexes of di-2-pyridyl ketone N(4)-phenylthiosemicarbazone. Polyhedron 26:3097–3102

    Article  CAS  Google Scholar 

  48. Arion VB, Rapta P, Telser J et al (2011) Syntheses, electronic structures, and EPR/UV−Vis−NIR spectroelectrochemistry of nickel(II), copper(II), and zinc(II) complexes with a Tetradentate ligand based on S-methylisothiosemicarbazide. Inorg Chem 50:2918–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ervin KM (2001) Experimental techniques in gas-phase ion thermochemistry. Chem Rev 101:391–444

    Article  CAS  PubMed  Google Scholar 

  50. Zeglis BM, Divilov V, Lewis JS (2011) Role of Metalation in the topoisomerase IIα inhibition and antiproliferation activity of a series of α-heterocyclic-N4-substituted thiosemicarbazones and their Cu(II) complexes. J Med Chem 54:2391–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dobrova A, Platzer S, Bacher F et al (2016) Structure–antiproliferative activity studies on l-proline- and homoproline-4-N-pyrrolidine-3-thiosemicarbazone hybrids and their nickel(ii), palladium(ii) and copper(ii) complexes. Dalton Trans 45:13427–13439

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is financially supported by the FAPDF (process number 0193.001545/2017), UnB, FINEP/CTINFRA and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. RLTP and RPO are financially supported by the São Paulo Research Foundation (FAPESP), grants 2011/07623–8 and 2017/24856–2. RLTP is supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (313648/2018–2) through a research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Claudia C. Gatto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Crystallographic data for the structures in this work have been deposited to the Cambridge Crystallographic Data Centre, CCDC 1893403-1893404. Copies of the available material can be obtained free of charge by application to the Director, CCDC, 12 Union Road, Cambridge CH2 1EZ, UK (Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk). Crystallographic data are in CIF files.

ESM 1

(DOCX 2559 kb)

ESM 2

(CIF 421 kb)

ESM 3

(CIF 398 kb)

ESM 4

(CIF 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, C.M., de Carvalho, J.G.M., Fujimori, M. et al. Structural investigation of group 10 metal complexes with thiosemicarbazone: crystal structure, mass spectrometry, Hirshfeld surface and in vitro antitumor activity. Struct Chem 31, 2093–2103 (2020). https://doi.org/10.1007/s11224-020-01564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01564-2

Keywords

Navigation