Skip to main content
Log in

The equilibrium molecular structure of 2-cyanopyridine from combined analysis of gas-phase electron diffraction and microwave data and results of ab initio calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The gas-phase electron diffraction study of 2-cyanopyridine was carried out for the first time. Results of ab initio structure calculations performed at the CCSD(T) level of theory agree well with the equilibrium structure determined by the electron diffraction method in combination with vibrational spectroscopy data and microwave rotational constants. The deviations between them are only a few thousandths of Å units and a few tenths of degree in the bond lengths and bond angles, respectively. The structure in the solid state is more different from that in the gas phase. The observed discrepancies between these structures are up to 0.02 Å and 2° in the bond lengths and bond angles, respectively. The influence of the ortho-, meta-, and para-cyano substituents on the geometry of pyridine ring is discussed. The pyridine ring is noticeably distorted due to cyano substituents. The Cipso–N and/or Cipso–C bond lengths are elongated both in 2-CNP and 4-CNP by 0.004 Å in comparison to those in pyridine, whereas the Cipso–C bond lengths are increased by 0.005 and 0.009 Å in 3-CNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joule JA, Mills K (2010) Heterocyclic chemistry. Wiley-Blackwell, Chichester

    Google Scholar 

  2. Rodgman A, Perfetti TA (2016) The Chemical Components of Tobacco and Tobacco Smoke. CRC Press, Boca Raton

    Google Scholar 

  3. Umar Y (2015). IOSR J Appl Chem (IOSR-JAC) 8:44–55

    CAS  Google Scholar 

  4. Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K (2014). Journal of Catalysis 318:95–107

    Article  CAS  Google Scholar 

  5. Yıldız R, Döner A, Doğan T, Dehri I (2014). Corros Sci 82:25–132

    Article  Google Scholar 

  6. Doraiswamy S, Sharma SD (1971). Curr Sci 40:398–399

    CAS  Google Scholar 

  7. Sharma SD, Doraiswamy S (1972). Curr Sci 41:475–477

    CAS  Google Scholar 

  8. Sharma SD, Doraiswamy S (1976). Chem Phys Lett 41:192–198

    Article  CAS  Google Scholar 

  9. Ford RG (1975). J Mol Spectrosc 58:178–184

    Article  CAS  Google Scholar 

  10. Kubiak R, Janczak J, Śledź M (2002). J Mol Struct 610:59–64

    Article  CAS  Google Scholar 

  11. Green JHS, Harrison DJ (1977). Spectrochim Acta 33A:75–79

    Article  CAS  Google Scholar 

  12. Spinner E (1963). J Chem Soc 1963:3860–3870

    Article  Google Scholar 

  13. Purvis GD, Bartlett RJ (1982). J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  14. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989). Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  15. Peterson KA, Dunning Jr TH (2002). J Chem Phys 117:10548–10560

    Article  CAS  Google Scholar 

  16. Møller C, Plesset MS (1934). Phys Rev 46:618–622

    Article  Google Scholar 

  17. Vogt N, Khaikin LS, Grikina OE, Rykov AN (2013). J Mol Struct 1050:114–121

    Article  CAS  Google Scholar 

  18. Vogt N, Demaison J, Rudolph HD, Perrin A (2015). Phys Chem Chem Phys 17:30440–30449

    Article  CAS  PubMed  Google Scholar 

  19. Juanes M, Vogt N, Demaison J, Leon I, Lesarri A, Rudolph HD (2017). Phys Chem Chem Phys 19:29162–29169

    Article  CAS  PubMed  Google Scholar 

  20. Vogt N, Marochkin II, Rykov AN (2015). J Phys Chem A 119:152–159

    Article  CAS  PubMed  Google Scholar 

  21. Dunning Jr TH (1989). J Chem Phys 90:1007–1024

    Article  CAS  Google Scholar 

  22. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y,. Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2009) MOLPRO program package

  23. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012). Wiley Interdiscip Rev: Comput Mol Sci 2:242–253

    CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  25. Kochikov IV, Kovtun DM, Tarasov YI (2008). Numerical methods of programming. Section 2 Programming 9:12–18 http://num-meth.srcc.msu.ru/zhurnal/tom_2008/pdf/v9r202.pdf

  26. Spiridonov VP (1997) In: Hargittai I, Hargittai M (eds) Advances in molecular structure research, vol 3. JAI, Greenwich, pp 53–81

    Chapter  Google Scholar 

  27. Spiridonov VP, Vogt N, Vogt J (2001). Struct Chem 12:349–376

    Article  CAS  Google Scholar 

  28. Kochikov IV, Tarasov YI, Kuramshina GM, Spiridonov VP, Yagola AG, Strand TG (1998). J Mol Struct 445:243–258

    Article  CAS  Google Scholar 

  29. Kochikov IV, Tarasov YI, Spiridonov VP, Kuramshina GM, Yagola AG, Saakjan AS, Popik MV, Samdal S (1999). J Mol Struct 485-486:421–443

    Article  CAS  Google Scholar 

  30. Kochikov IV, Tarasov YI, Vogt N, Spiridonov VP (2002). J Mol Struct 607:163–174

    Article  CAS  Google Scholar 

  31. Dakkouri M, Kochikov IV, Tarasov YI, Vogt N, Vogt J, Bitschenauer R (2002). J Mol Struct 607:195–206

    Article  CAS  Google Scholar 

  32. Kochikov IV, Tarasov YI (2003). Struct Chem 14:227–238

    Article  CAS  Google Scholar 

  33. Khaikin LS, Kochikov IV, Grikina OE, Tikhonov DS, Baskir EG (2015). Struct Chem 26:1651–1687

    Article  CAS  Google Scholar 

  34. Khaikin LS, Kochikov IV, Rykov AN, Grikina OE, Ageev GG, Shishkov IF, Kuznetsov VV, Makhova NN (2019). Phys Chem Chem Phys 21:5598–5613

    Article  CAS  PubMed  Google Scholar 

  35. Wilson EB, Howard JB (1936). J Chem Phys 4:260–267

    Article  CAS  Google Scholar 

  36. Nielsen HH (1951). Rev Mod Phys 23:90–136

    Article  CAS  Google Scholar 

  37. Fogarasi G, Pulay P (1985) In: Durig JR (ed) Vibrational spectra and structure, Vol. 14, Chap. 3. Elsevier, Amsterdam, pp 125–219

  38. Khaikin LS, Vogt N, Rykov AN, Grikina OE, Vogt J, Kochikov IV, Ageeva ES, Shishkov IF (2018). Mend Commun 28:236–238

    Article  CAS  Google Scholar 

  39. Khaikin LS, Vogt N, Rykov AN, Grikina OE, Demaison J, Vogt J, Kochikov IV, Shishova YD, Ageeva ES, Shishkov IF (2018). Russ J Phys Chem A 92:1970–1974

    Article  CAS  Google Scholar 

  40. Topaçli A, Bayari S (1996). Spectrosc Lett 29:277–291

    Article  Google Scholar 

  41. Isaq M, Gupta SP, Sharma SD, Ahmad S (1998). Asian J Chem 10:906–909

    CAS  Google Scholar 

  42. Vogt N, Marochkin II, Rykov AN (2018). Phys Chem Chem Phys 20:9787–9795

    Article  CAS  PubMed  Google Scholar 

  43. Chem3D Ultra, version 17.1 (2018) PerkinElmer Informatics Inc

  44. Tsirelson VG (2010) Quantum chemistry. Molecules, molecular systems and solids. Binom Publ., Moscow, pp 332–335 (in Russian)

  45. Voityuk AA, Stasyuk AJ, Vyboishchikov SF (2018). Phys Chem Chem Phys 20:23328–23337

    Article  CAS  PubMed  Google Scholar 

  46. Verstraelen T, Pauwels E, de Proft F, van Speybroeck V, Geerlings P, Waroquier M (2012). Journal of Chemical Theory and Computation 8:661–676

    Article  CAS  PubMed  Google Scholar 

  47. Thompson JD, Xidos JD, Sonbuchner TM, Cramer CJ, Truhlar DG (2002). Phys Chem Comm 5:117–134

    Google Scholar 

  48. Cramer SJ (2002) Essential of computational chemistry. Theories and models. Wiley, Chichester

    Google Scholar 

Download references

Funding

This work has been supported by the Dr. B. Mez-Starck Foundation (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid S. Khaikin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, N., Khaikin, L.S., Rykov, A.N. et al. The equilibrium molecular structure of 2-cyanopyridine from combined analysis of gas-phase electron diffraction and microwave data and results of ab initio calculations. Struct Chem 30, 1699–1706 (2019). https://doi.org/10.1007/s11224-019-01393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01393-y

Keywords

Navigation