Skip to main content

Advertisement

Log in

The linkage between reversible Friedel–Crafts acyl rearrangements and the Scholl reaction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Friedel–Crafts acyl rearrangements in PPA (at 80–240 °C) and Scholl reactions in AlCl3/NaCl (at 140–220 °C) of benzoylnaphthalenes and fluorobenzoylnaphthalenes have been studied experimentally as a function of temperature and time and computationally. 1BzNA, 2BzNA, 1-4FBzNA, 2-4FBzNA, 1-3FBzNA, 2-3FBzNA, 1-2FBzNA, and 2-2FBzNA were synthesized by classical Friedel–Crafts acylations of naphthalene with benzoyl chloride, benzene with 2-naphthoyl chloride, fluorobenzene with 1- and 2-naphthoyl chlorides and of naphthalene with fluorobenzoyl chlorides, and served as substrates in the investigation. Their structures have been determined by X-ray crystallography and verified by their 1H-, 13C-, and 19F-NMR spectra. 1BzNA, 1-4FBzNA, 1-3FBzNA, and 2-2FBzNA crystallized as the E-diastereomers, whereas 2BzAN, 1-2FBzAN, 2-4FBzAN, and 2-3FBzAN crystallized as the Z-diastereomers. The deviations of the carbonyl group from the naphthyl plane were higher as compared with the deviations from the phenyl plane and were considerably higher in the α-naphthyl ketones than in the β-naphthyl ketones. Intermolecular interactions due to C–H···O and/or C–H···F contacts in the crystal structures of 1E-4FBzNA and 1E1′E-3FBzAN have been revealed. 1BzNA rearranged in PPA under argon to 2BzNA via deacylation to naphthalene (e.g., 140 °C, 10 h) and underwent a regioselective intramolecular cyclodehydrogenation at high temperatures to the Scholl reaction product 7H-benz[de]anthracen-7-one (BdeAN) (e.g., 200 °C, 6 h). At 80 °C, benzene was isolated. 2BzNA underwent in PPA deacylation to naphthalene (e.g., 160 °C, 6 h) and an intramolecular cyclodehydrogenation to BdeAN at high temperatures (e.g., 220 °C, 6 h), necessarily via the putative intermediate 1BzNA. Higher yields of the acyl rearrangement and the Scholl reaction products were obtained under oxygen. 1-4FBzNA and 2-4FBzNA reacted in PPA analogously to 1BzNA and 2BzNA, respectively, with the following exceptions: 2-4FBzNA underwent an acyl rearrangement in PPA to 1-4FBzNA at 260–300 °C, without any formation of the Scholl reaction product 10FBdeAN. 1-4FBzNA also did not yield 10FBdeAN. 1-2FBzNA and 2-2FBzNA behaved similarly. The formation of naphthalene and benzene in the deacylation steps indicated cleavages of both the 1- and 2-naphthyl–benzoyl bonds and the 1- and 2-naphthoyl–phenyl bonds to give naphthalene and benzoylium cation and benzene and 1- and 2-naphthoylium cation, respectively. At 80–100 °C, 1-2FBzNA, 1-3FBzNA, and 1-4FBzNA underwent deacylations to fluorobenzene in PPA, followed by reacylation, each giving a mixture of the three 1-fluorobenzoylnaphthalenes. 2FBzNA, 2-3FBzNA, and 2-4FBzNA behaved similarly, each giving a mixture of the three 2-fluorobenzoylnaphthalenes. The results taken together verified the reversibility of the 1-BzNA2BzNA acyl rearrangements in PPA. The Scholl reaction (AlCl3/NaCl) of 1BzNA (e.g., at 140 °C) gave BdeAN and 2BzNA, whereas 2BzNA gave only BdeAN (at 200–220 °C). 1-4FBzNA and 2-4FBzNA gave (at 200–220 °C) only 2-4FBzNA and 1-4FBzNA, respectively. All the six FBzNA isomers failed to undergo Scholl reaction cyclodehydrogenations to give any FBdeAN isomer. A linkage between the Friedel–Crafts acyl rearrangements and the Scholl reaction has thus been established. A systematic DFT study at B3LYP/6-311(d,p)/PCM (formic acid)) substantiated the predicted mechanism and the reversibility of the acyl rearrangements of benzoylnaphthalenes, in which 1BzNA and 2BzNA are the kinetically controlled and the thermodynamically controlled products, respectively. The DFT-calculated Gibbs free-energy of the transition-state (1Z-1BzNH+ ➔➔ 2σ-2BzNA) in the Friedel–Crafts acyl rearrangement of 1Z-BzNA is considerably lower than the transition state of the cyclization step in the arenium-cation mechanism of the Scholl reaction, in line with experiment, which indicated higher temperatures for the Scholl reaction. DFT calculations of the dication pathway of the Scholl reaction of the E- and Z-diastereomers/conformers of 1BzNA confirmed the preference of the formation of BdeAN versus BaFL, consistently with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17

Similar content being viewed by others

References

  1. Wang Z (2009) Friedel-Crafts acylation. Comprehensive organic name reactions and reagents, vol Vol. 1, Chapter 248. Wiley, pp 1126–1130

  2. Olah GA (1973) Friedel-Crafts chemistry. Wiley Intersceince, New York, p 102

    Google Scholar 

  3. Gore PH (1955). Chem Rev 55:229–281

    Article  CAS  Google Scholar 

  4. Norman ROC, Taylor R (1965) Electrophilic substitution in benzenoid compounds, vol Chapter 6. Elsevier, London, p 174

    Google Scholar 

  5. Wang Z (2009) Friedel-Crafts alkylation. Comprehensive organic name reactions and reagents, vol Vol. 1, Chapter 249. Wiley, pp 1131–1136

  6. Buehler CA, Pearson DE (1970) Friedel-Crafts and related acylations. Survey of organic synthesis, vol Chapter 11, C. Wiley Interscienc, New York, p 653

    Google Scholar 

  7. Pearson DE, Buehler CA (1971) Synthesis 455–477

  8. Gore PH (1974) (1974) Chem Industry 727–731

  9. Andreas AD, Gore PH, Morris FC (1978). J Chem Soc Chem Comm 14:271–272

  10. Agranat I, Shih Y-S, Bentor Y (1974). J Am Chem Soc 96:1259

  11. Gore PH (1964) Aromatic ketone synthesis. In: Olah GA (ed) Friedel-Crafts and related reactions. Part I, Chapter XXXI, vol Vol. III. Wiley Interscience, New York, pp 1–381

    Google Scholar 

  12. Jensen FR (1957). J Am Chem Soc 79:1226–1231

    Article  CAS  Google Scholar 

  13. Agranat I, Bentor Y, Shih Y-S (1977). J Am Chem Soc 99:7068–7070

    Article  CAS  Google Scholar 

  14. Mala’bi T, Pogodin S, Cohen S, Agranat I (2013). RSC Adv 3:21797–21810

  15. Jousselin-Oba T, Sbargoud K, Vaccaro G, Meinardi F,  Yassar A, Frigoli M (2017). Chem Eur J 23:6184–16188

  16. Okamoto A, Yonezawa N (2015). J Synth Org Chem 73:339–360

    Article  CAS  Google Scholar 

  17. Zubenko AA, Kartsev VG, Morkovnik AS, Divaeva LN, Suponitsky KV (2016). Chemistry Select 1:2560–2564

  18. Wang Z (2009) Scholl Reaction (Scholl Condensation). Comprehensive organic name reactions and reagents. Chapter 569, vol Vol. 3. Wiley, pp 2518–2522

  19. Scholl R, Mansfeld J (1910). Ber Dtsch Chem Ges 43:1734–1746

  20. Scholl R, Seer C (1912). Monatsh Chem 33:1–8

    Article  CAS  Google Scholar 

  21. Scholl R, Seer C (1912). Justus Liebigs Ann Chem 394:111–177

  22. Wu J, Pisula W, Müllen K (2007). Chem Rev 107:718–747

  23. Kränzlein G, Vollmann H (1931) DE Pat. 518,316 (Dec. 31,1931)

  24. Kränzlein G,Vollmann H, Diefenbach E (1932) DE Pat. 555,180, (July 19, 1932)

  25. Balaban AT, Nenitzescu CD (1964) Dehydrogenation condensation of aromatics (Scholl and related reactions). In: Olah GA (ed) Friedel-Crafts and related reactions, vol Vol. 2, part II. Wiley Intersceince, New York, pp 979–1047

    Google Scholar 

  26. Grzybrowski M, Skonieeczny K, Butenschon H, Gryko DT (2013). Angew Chem Int Ed 52:9900–9930

  27. Kovacic P, Jones MB (1987). Chem Rev 87:357–379

    Article  CAS  Google Scholar 

  28. Kränzlein G (1939) Alumiumchlorid in der Organischen Chemie, 3rd edn. Verlag Chemie, Berlin, p 146

    Google Scholar 

  29. Thomas CA (1941) Anhydrous aluminum chloride in organic chemistry. Reinhold Publishing Corporation, New York, pp 648–655

  30. Jones HL, Osteryoung RA (1975) Organic reactions in molten Tetrachloroalumate solvents. In: Braunstein J, Mamantov G, Smith GP (eds) Advances in molten salts chemistry, vol Vol. 3, Chapter 3. Plenum Publishing Corp., New York, pp 121–176

    Chapter  Google Scholar 

  31. Narita A, Wang X-Y, Feng X, Müllen K (2015). Chem Soc Rev 44:6616–6643

    Article  CAS  PubMed  Google Scholar 

  32. Little MS, Yeats SG, Aiwattar AA, Heard KWJ, Raftery J, Edwards AC, Parry AVS, Quale P (2017). Eur J Org Chem:1694–1703

  33. Gratz S, Beyer D, Tkachova V, Hellmann S, Berger R, Feng X, Borchardt J (2018). Chem Commun 54:5307–5310

  34. Cohen R, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor AJ (2008) Quantities, units and symbols in physical chemistry. IUPAC Green Book. 3rd edn 2nd Printing . IUPAC & RSC Publishing, Cambridge, p 52

  35. McNaught AD, Wilkinson A (1997) Chemical Equilibrium, IUPAC Compendium of Chemical Terminology. the “Gold Book”2nd edn. Blackwell Scientific Publications, Oxford XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook. Last update: 2014-02-24; version: 2.3.3. DOI of this term: https://doi.org/10.1351/goldbook.C01023

    Google Scholar 

  36. Pogodin S, Cohen S, Mala’bi T, Agranat I (2011) "Polycyclic aromatic ketones – a crystallographic and theoretical study of acetyl anthracenes", Current trends in X-ray crystallography, Dr. Annamalai Chandrasekaran (Ed.), ISBN: 978-953-307-754-3, InTech, Available from: http://www.intechopen.com/books/current-trends-in-x-ray-crystallography/polycyclic-aromatic-ketones-acrystallographic-and-theoretical-study-of-acetyl-anthracenes

  37. Mala’bi T, Pogodin S, Agranat I (2011). Tetrahedron Lett 52:1854–1857

    Article  CAS  Google Scholar 

  38. Carey FA, Sundberg RJ (2002) Advanced organic chemistry 4th edition, Part A: structure and mechanism, Kluwer Academic Publishers, New York, p 568

  39. Davlieva MG, Lindeman SV, Neretin IS, Kochi JK (2005). J Org Chem 70:4013–4021

  40. Baddeley G (1949) J Chem Soc S 99–S 103

  41. Newman MS, Wiseman EH (1961). J Org Chem 26:3208–3211

    Article  CAS  Google Scholar 

  42. Newman MS, Swaminathan S, Chatterji R (1959). J Org Chem 24:1961–1964

  43. Huisgen R, Zahler WD (1963). Chem Ber 96:736–746

    Article  CAS  Google Scholar 

  44. Macleod LC, Allen CFH (1943). Org Synt, Coll 2:62–64

  45. Rao MLN, Venkatesh V, Banerjee D (2007). Tetrahedron 63:12917–12926

  46. Dayal SK, Ehrenson S, Taft RW (1972). J Am Chem Soc 94:9113–9122

    Article  CAS  Google Scholar 

  47. Wells PR, Ehrenson S, Taft RW (1968). Prog Phys Org Chem 6:147–322

  48. CCDC 1532265, 1532266, 1532267, 1532268, 1532269, 1532270, 1532271 and 1532272contain the supplementary crystallographic data for this article. These data can be obtained free of charge at www.ccdc.ac.uk/conts/retrieving.htmlmfrom the Cambridge Crystallogrphic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax:+44(0) 1223-336033; email: deposit@ccdc.cam.ac.uk

  49. Moss GP (1996). Basic terminology of stereochemistry (IUPAC recomendation 1996) Pure & Appl. Chem 68:2193–2222

  50. Testa B, Caldwell J, Kisakurek MV (eds) (2014) Organic stereochemistry: guiding principle and biomedicinal relevance, VHCA Verlag Helvetica Chim Acta, Zurich and Wiley-VCH, Weinheim, pp 78–79 and 376

  51. “IUPAC Blue Book, Nomenclature of organic chemistry – IUPAC recommendations and preferred names 2013” (2013), Chapter P-9, “Specification of configurations and conformations”, pp. 1156–1292, Royal Society of Chemistry, Cambridge, U.K.

  52. Zefirov YV (1997). Crystallogr Rep 42:111–116

  53. Bondi A (1964). J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  54. Mohri S, Ohisa S, Isozaki K, Yonezawa N, Okamoto A (2015). Acta Cryst C 71:344–350

  55. Assadi N, Pogodin S, Cohen S, Agranat I (2012). Struct Chem 23:771–790

    Article  CAS  Google Scholar 

  56. Assadi N, Pogodin S, Cohen S, Agranat I (2013). Struct Chem 24:1229–1240

  57. Sunanda P, Shubhankar S, Ray JK (2010). Tetrahedron Lett 51:5604–5608

  58. Oded YN, Pogodin S, Agranat I (2016). J Org Chem 81:11389–11393

    Article  CAS  PubMed  Google Scholar 

  59. Müller P (1994). Glossary of terms used in physical organic chemistry (IUPAC Recomendation 1994) Pure Appl Chem 66:1077–1184

  60. Olah GA, Kuhn SJ (1958). J Am Chem Soc 80:6541–6545

    Article  CAS  Google Scholar 

  61. Effenberger F (1989). Acc Chem Res 22:27–35

    Article  CAS  Google Scholar 

  62. Liljenberg M, Brinck T, Herschend B, Rein T, Rockwell G, Svensson M (2010). J Org Chem 75:4696–4705

    Article  CAS  PubMed  Google Scholar 

  63. Brinck T, Liljenberg M (2016) The use of quantum chemistry for mechanistic analyses of SEAr reactions. In: Mortier J (ed) Arene chemistry: reaction, mechanisms and methods for aromatic compounds, vol Ch. 4. Wiley, New York, pp 83–105

  64. George P, Trachtman M, Bock CW, Brett AM (1976). Tetrahedron 32:317–323

  65. Minkin VI (1999) Glossary of terms used in theoretical organic chemistry, (IUPAC recommendation 1999). Pure Appl Chem 71:1919–1981

    Article  CAS  Google Scholar 

  66. Rathore R, Kochi JK (1998). Acta Chem Scand 52:114–130

    Article  CAS  Google Scholar 

  67. Rempala P, Kroulík J, King BT (2006). J Org Chem 71:5067–5081

    Article  CAS  PubMed  Google Scholar 

  68. King BT, Kroulík J, Robertson CR, Rempala P, Hilton CL, Korinek JD, Gortari LM (2007). J Org Chem 72:2279–2288

    Article  CAS  PubMed  Google Scholar 

  69. Chaolumen, Murata M, Wakamiya A, Murata Y (2017). Angew Chem Int Ed 56:5082–5086

  70. Liu J, Narita A, Osella S, Zhang W, Schollmeyer D, Beljonne D, Feng X, Müllen K (2016). J Am Chem Soc 138:2602–2608

    Article  CAS  PubMed  Google Scholar 

  71. Harris RK, Becker ED, De Menezes SMC, Granger P, Hoffman RE, Zilm KW (2008) Further conventions from NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84

  72. MiTeGen; LLC P.O. Box 3867 Ithaca, NY 14852

  73. SMART-NT V5.6, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany

  74. SAINT-NT V5.0, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany

  75. SHELXTL-NT V6.1, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany

  76. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ . Gaussian, Inc., Wallingford CT (2013)

  77. Becke AD (1993). J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  78. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  79. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999–3093

  80. Thapa B, Schlegel HB (2016). J Phys Chem A 120:5726–5735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Agranat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agranat, I., Oded, Y.N., Mala’bi, T. et al. The linkage between reversible Friedel–Crafts acyl rearrangements and the Scholl reaction. Struct Chem 30, 1579–1610 (2019). https://doi.org/10.1007/s11224-019-01368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01368-z

Keywords

Navigation