Skip to main content
Log in

The mechanistic study of reaction between N-benzoyl carbamates and aliphatic/aromatic amines for synthesis of substituted N-benzoyl urea derivatives: a DFT approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A thorough investigation on whether a stepwise or a concerted pathway is involved in the synthesis of substituted N-benzoyl urea derivatives by reaction of substituted N-benzoylcarbamates and aliphatic/aromatic amines using density functional theory (DFT) calculations at B3LYP/6–31 + G (d,p) level of theory has been reported. The study of effects of nature of leaving group present in N-benzoylcarbamate, structure of amines, and solvents on the reaction showed that the choice of reaction mechanism involved depends upon the nature of leaving group present on N-benzoylcarbamate. The effect of structure of amine on reaction mechanism depends upon the type of leaving group present on N-benzoylcarbamate. We have also observed that the reaction between aliphatic/aromatic amine with phenyl benzoylcarbamate is thermodynamically more favorable, while a reaction between phenyl/methyl benzoylcarbamates with methylamine is more preferred. The effect of polar solvent water and non-polar solvent toluene on reaction mechanism was also investigated to account the interactions of solvent molecules with polar transition states at the same level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bigi F, Maggi R, Sartori G (2000). Green Chem 2(4):140–148

    Article  CAS  Google Scholar 

  2. Wu C, Cheng H, Liu R, Wang Q, Hao Y, Yua Y, Zhao F (2010). Green Chem 12:1811

    Article  CAS  Google Scholar 

  3. Wang H, Lim ZY, Zhou Y, Ng M, Lu T, Lee K, Goh KC, Wang X, Wu X, Khng HH, Goh SK, Ong WC, Bonday Z, Sun ET (2010). Bioorg Med Chem Lett 20:3314

    Article  CAS  Google Scholar 

  4. Keche AP, Hatnapure GD, Tale RH, Rodge AH, Birajdar SS, Kamble VM (2012). Bioorg Med Chem Lett 22(10):3445–3448

    Article  CAS  Google Scholar 

  5. Vishnyakova TP, Golubeva IA, Glebova EV (1985). Russ Chem Rev (Engl Transl) 54(3):249–261

    Article  Google Scholar 

  6. Matsuda K (1994). Med Res Rev 14:271

    Article  CAS  Google Scholar 

  7. Getman DP, DeCrescenzo GA, Heintz RM, Reed KL, Talley JJ, Bryant ML, Clare M, Houseman KA, Marr JJ (1993). J Med Chem 36(2):288–291

    Article  CAS  Google Scholar 

  8. Takahashi S, Shudo K, Okamoto T, Yamada K, Isogai Y (1978). Phytochemistry 17(8):1201–1207

    Article  CAS  Google Scholar 

  9. Kocyigit-Kaymakcioglu B, Celen AO, Tabanca N, Ali A, Khan SI, Khan IA, Wedge DE (2013). Molecules 18(3):3562–3576

    Article  CAS  Google Scholar 

  10. Diaz DJ, Darko AK, McElwee-White L (2007) Eur J Org Chem 4453–4465

  11. Barrett AG, Boorman TC, Crimmin MR, Hill MS, Kociok-Kohn G, Procopiou PA (2008). Chem Commun 41:5206–5208

    Article  Google Scholar 

  12. Liprot D, Alcaraz L, Roberts B (2010). Adv Synth Catal 352:2183

    Article  Google Scholar 

  13. Maki T, Ishihara K, Yamamoto H (2004) Synlett 1355-1358

  14. Speziale AJ, Smith LR (1963). J Organomet Chem 28:1805–1811

    Article  CAS  Google Scholar 

  15. Wiley PF (1949). J Am Chem Soc 7:1310

    Article  Google Scholar 

  16. Stokes S, Martin NG (2012). Tetrahedron Lett 53:4802

    Article  CAS  Google Scholar 

  17. Menger FM, Glass LE (1974). J Organomet Chem 39:2469–2470

    Article  CAS  Google Scholar 

  18. Shawali AS, Harhash A, Sidky MM, Hassaneen HM, Elkaabi SS (1986). J Organomet Chem 51(18):3498–3501

    Article  CAS  Google Scholar 

  19. Koh HJ, Kim OS, Lee HW, Lee I (1997). J Phys Org Chem 10:725–730

    Article  CAS  Google Scholar 

  20. Oh HK, Park JE, Sung DD, Lee I (2004). J Organomet Chem 69(9):3150–3153

    Article  CAS  Google Scholar 

  21. Oh HK, Jin YC, Sung DD, Lee I (2005). Org Biomol Chem 3(7):1240–1244

    Article  CAS  Google Scholar 

  22. Sung K, Zhuang BR, Huang PM, Jhong SW (2008). J Organomet Chem 73(11):4027–4033

    Article  CAS  Google Scholar 

  23. Ilieva S, Nalbantova D, Hadjieva B, Galabov B (2013). J Organomet Chem 78(13):6440–6444

    Article  CAS  Google Scholar 

  24. Bergon M, Calmon JP (1981). Tetrahedron Lett 22(10):937–940

    Article  CAS  Google Scholar 

  25. Zhu X, Cui P, Zhang D, Liu C (2011). J Phys Chem A 115(29):8255–8263

    Article  CAS  Google Scholar 

  26. Yuan H, Zheng Y, Zhang J (2012). J Organomet Chem 77(19):8744–8749

    Article  CAS  Google Scholar 

  27. Bouacha S, Nacereddine AK, Djerourou A (2013). Tetrahedron Lett 54(31):4030–4033

    Article  CAS  Google Scholar 

  28. Kona J, Fabian WM, Zahradnik P (2001). J Chem Soc Perkin Trans 2:422–426

    Article  Google Scholar 

  29. Bagno A, Kantlehner W, Kress R, Saielli G, Stoyanov E (2006). J Organomet Chem 71(25):9331–9340

    Article  CAS  Google Scholar 

  30. Scales S, Johnson S, Hu Q, Do QQ, Richardson P, Wang F, Braganza J, Ren S, Wan Y, Zheng B, Faizi D (2013). Org Lett 15(9):2156–2159

    Article  CAS  Google Scholar 

  31. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983). J Comput Chem 4(3):294–301

    Article  CAS  Google Scholar 

  34. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982). J Chem Phys 77(7):3654–3665

    Article  CAS  Google Scholar 

  35. Gordon MS (1980). Chem Phys Lett 76:163

    Article  CAS  Google Scholar 

  36. Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford, 2009

  37. Singh A, Goel N (2014). J Mol Model 20(6):2265

    Article  Google Scholar 

  38. Clemente FR, Houk KN (2004). Angew Chem 116(43):5890

    Article  Google Scholar 

  39. Singh A, Goel N (2016). J Phys Org Chem 29(10):544

    Article  CAS  Google Scholar 

  40. Nieto-Oberhuber C, Munoz MP, Bunuel E, Nevado C, Cardenas DJ, Echavarren AM (2004). Angew Chem Int Ed 43(18):2402–2406

    Article  CAS  Google Scholar 

  41. Anderson P, Petit A, Ho J, Mitoraj MP, Coote ML, Danovich D, Shaik S, Braïda B, Ess DH (2014). J Organomet Chem 79(21):9998–10001

    Article  CAS  Google Scholar 

  42. Fukui K (1981). Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  43. Miertuš S, Scrocco E, Tomasi J (1981). Chem Phys 55(1):117–129

    Article  Google Scholar 

  44. Barone V, Cossi M, Tomasi J (1998). J Comput Chem 19:404

    Article  CAS  Google Scholar 

  45. Lu T, Chen F (2012). J Comput Chem 33:580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjinder Singh.

Ethics declarations

Ethical statement

All ethical guidelines have been adhered.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H. The mechanistic study of reaction between N-benzoyl carbamates and aliphatic/aromatic amines for synthesis of substituted N-benzoyl urea derivatives: a DFT approach. Struct Chem 30, 37–51 (2019). https://doi.org/10.1007/s11224-018-1171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1171-8

Keywords

Navigation