Structural Chemistry

, Volume 29, Issue 6, pp 1623–1636 | Cite as

Influence of the heteroatom on the structure, bonding and ring strain of a series of three-membered rings containing a second, third, fourth and fifth row elements: a theoretical investigation

  • Angel H. Romero
Original Research


Three-membered heterorings have received a great interest for the design of organic reactions and new active therapeutic agents. However, there is little information available in the literature about their structural properties, in particular for those containing third, fourth, and fifth row elements. With this in mind, structure, bonding, ring strain, and Mulliken charge distribution of a series of 22 saturated three-membered rings containing a second, third, fourth, and fifth row element were theoretically investigated. Calculations were carried out within the MP2, PBE1PBE, and CCSD approximations using Pople’s and correlation consistent basis sets. In general, structural predictions obtained by MP2 and coupled cluster are comparable with each other for the studied heterocycles, and their predictions are in good agreement with the little experimental data available. The structural parameters, ring strain, and Mulliken charges are strongly affected by the nature of heteroatom contained into ring skeleton, finding a consistent periodic relationship according to the row-group or row-period plot. The ring geometry was highly symmetric in most of the studied cases (C2h), except for the rings containing V-group elements (Cs) whose molecular symmetry is distorted by the disposition out of molecular plane of H-heteroelement bond. Finally, the increase of heteroatomic radius increases significantly the molecular strain of these three-membered heterocycles, being especially notable in the four and fifth row element rings. Curiously, the rings containing tellurium, iodium, bromo, chloro, and sulfur presented a ring strain comparable to those common heterocycles containing second row element.


Three-membered heterocycles Baeyer strain Bonding Structure and Mulliken charge 



The author thanks to the Cátedra de Química (Facultad de Farmacia, Universidad Central de Venezuela, Caracas) and Ms. Evangelina Cordero for facilitating computers.

Compliance with ethical standards

Conflict of interest

The author reports no conflicts of interest. The author is responsible for the content and writing of this article.

Supplementary material

11224_2018_1139_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 65 kb)


  1. 1.
    Tanner D (1994) Chirale Aziridine-Herstellung und stereoselektive Transformationen. Angew Chem 106:625–646. CrossRefGoogle Scholar
  2. 2.
    Osborn HMI, Sweeney J (1997) The asymmetric synthesis of aziridines. Tetrahedron Asymmetry 8:1693–1715. CrossRefGoogle Scholar
  3. 3.
    Shi M, Liu JM, Wei Y, Shao LX (2012) Rapid generation of molecular complexity in the Lewis or Brønsted acid-mediated reactions of methylenecyclopropanes. Acc Chem. Res 45:641–652. CrossRefPubMedGoogle Scholar
  4. 4.
    Parsons AT, Smith AG, Neel AN, Johnson JS (2010) Dynamic kinetic asymmetric synthesis of substituted pyrrolidines from racemic cyclopropanes and aldimines: reaction development and mechanistic insights. J Am Chem Soc 132:9688–9692. CrossRefPubMedGoogle Scholar
  5. 5.
    Maghsoodlou MT, Khorassani SMH, Heydari R, Charati FR, Hazeri N, Lashkari M, Rostamizadeh M, Marandi G, Sobolev A, Makha M (2009) Highly stereoselective construction of functionalized cyclopropanes from the reaction between acetylenic esters and C–H acids in the presence of triphenylarsine. Tetrahedr Lett 50:4439–4442. CrossRefGoogle Scholar
  6. 6.
    Rappoport Z (ed) (1995) The chemistry of the cyclopropyl group. Wiley, ChichesterGoogle Scholar
  7. 7.
    Weissberger A, Taylor EC (eds) (1985) Chemistry of heterocyclic compounds: small ring heterocycles, part 3: oxiranes, arene oxides, oxaziridines, dioxetanes, thietanes, thietes, thiazetes, and others, Volume 42. Wiley, New YorkGoogle Scholar
  8. 8.
    Majumdar KC, Chattopadhyay SK (eds) (2011) Heterocycles in natural product synthesis. Wiley, WeinheimGoogle Scholar
  9. 9.
    Bernal I, Levendis DC, Fuchs R, Reisner GM, Cassidy JM (1997) Crystal structures of phenyl-substituted cyclopropanes. IV. The crystal structure (at 21‡C and −100‡C) and the phenyl ring conformation in 4-cyclopropylacetanilide. Struct Chem 8:275–285. CrossRefGoogle Scholar
  10. 10.
    Liu XH, Weng JQ, Tan CX (2013) Journal of Chemistry, ID 306361. 1–6.Google Scholar
  11. 11.
    Knauer L, Golz C, Strohmann C (2015) Crystal structure of 1-[(2,4,6-triisopropylphenyl)sulfonyl]aziridine. Acta Crystallogr E Crystallogr Commun 71:438–439. CrossRefGoogle Scholar
  12. 12.
    Buijnsters PJJA, Van der Reijen FP, Feiters MC, De Gelder R, Sommerdijk NAJM, Nolte RJM, Zwanenburg B (1999) Synthesis and crystal structure of (+)-(2R,3R)-N, N′-bis-trityl-2,3-bis-aziridine. J Chem Cryst 29:179–183. CrossRefGoogle Scholar
  13. 13.
    Sankar T, Raju P, Mohanakrishnan AK, Naveen S, Lokanath NK, Gunasekaran K (2015) Crystal structure of 2,3-bis(5-bromo-4-fluoro-2-nitrophenyl) oxirane. Struct Chem Cryst Comm 1(1–3).
  14. 14.
    Savithri MP, Yuvaraj PS, Reddy BSR, Rajac R, SubbiahPandic A (2015) Crystal structure of methyl 1-methyl-2-oxospiro[indoline-3,2′-oxirane]-3′-carboxylate. Cryst Comm E 71:o274–o275. CrossRefGoogle Scholar
  15. 15.
    Yudin AK (ed) (2006) Aziridines and epoxides in organic synthesis. Willey, New YorkGoogle Scholar
  16. 16.
    Kim GW, Lee JY (2002) J Appl Polym Sci 86:1942–1952CrossRefGoogle Scholar
  17. 17.
    Lee H, Neville K (1990) Handbook of epoxy resins. Mc Graw-Hill, New YorkGoogle Scholar
  18. 18.
    Adrian JF, Curtis J, Omiecinski (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59CrossRefGoogle Scholar
  19. 19.
    Tanner D (1992) Enantioselective routes toward 1β-methylcarbapenems from chiral aziridines. Tetrahedron 48:6079–6086. CrossRefGoogle Scholar
  20. 20.
    Sommerdijk NAJM, Buijnsters PJJA, Akdemir H, Geurts DG, Nolte RJM, Zwaneburg B (1997) Aziridines as precursors for chiral amide-containing surfactants. J.Org. Chem. 62:4955–4960. CrossRefGoogle Scholar
  21. 21.
    Ando W, Fujita M, Yoshida H, Sekiguchi A (1988) Stereochemistry of the addition of diarylsilylenes to cis- and trans-2-butenes. J Am Chem Soc 110:3310–3311. CrossRefGoogle Scholar
  22. 22.
    Delker GL, Wang Y, Stucky GD, Lambert RL, Haas CK, Seyferth D (1976) Molecular structure and bonding of a silacyclopropane, dimethyldispiro[bicyclo[4.1.0]heptane-7,2′-silacyclopropane-3′,7″-bicyclo[4.1.0]heptane]. J Am Chem Soc 98:1779–1784. CrossRefGoogle Scholar
  23. 23.
    Mathey F (1990) Chemistry of 3-membered carbon-phosphorus heterocycles. Chem Rev 90:997–1025. CrossRefGoogle Scholar
  24. 24.
    Hung JT, Yang SW, Gray GM, Lammertsma K (1993) Synthesis of 1-phosphaspiro[2.n]alkanes by addition of terminal phosphinidene complexes to exocyclic olefins. J Org Chem 58:6786. CrossRefGoogle Scholar
  25. 25.
    Yang F, Fanwick PE, Kubiak CP (2002) Inter- and intramolecular pi-stacking interactions in cis-bis[1-(9-anthracene)]phosphirane complexes of platinum(II). Inor Chem 41:4805–4809. CrossRefGoogle Scholar
  26. 26.
    Amer H, Mereiter K, Stanetty C, Hofinger A, Czollner L, Beseda I, Jordis U, Kueenburg B, Clasen-Houlben D, Kosma P (2010) Synthesis and crystal structures of ring A modified glycyrrhetinic acid derivatives derived from 2,3-oxirane and 2,3-thiirane intermediates. Tetrahedron 66:4390–4402. CrossRefGoogle Scholar
  27. 27.
    Lee M, Hesek D, Noll BC, Oliver AG, Mobashery S (2014) Enantiomers of a selective gelatinase inhibitor: (R)- and (S)-2-[(4-phenoxyphenyl)sulfonylmethyl]thiirane. Acta Crystallogr C 70:1003–1006. CrossRefGoogle Scholar
  28. 28.
    Morgon NH, Argenton AB, Slva MLP, Rivero JM (1997) Experimental and theoretical characterization of FSi(OCH3)2(OCH2): a gas phase fluoride−siloxirane adduct. J Am Chem Soc 119:1708–1716. CrossRefGoogle Scholar
  29. 29.
    Itzstein M, Jenkins ID (1983) A novel phosphorus → oxygen phenyl migration: triphenylphosphine dioxide as a reaction intermediate. J Chem Soc Chem Commun:164–165.
  30. 30.
    Tsuji S, Kondo M, Ishiguro K, Sawaki Y (1993) Phosphadioxirane intermediates in the reaction of singlet oxygen with phosphites and phosphines. J Org Chem 58:5055–5059. CrossRefGoogle Scholar
  31. 31.
    Akasaka T, Ando W (1994) Formation of a new active oxidizing species in photosensitized oxygenation of heteroatom compounds. Phosphorus Sulfur Silicon Relat Elem 95:437–438. CrossRefGoogle Scholar
  32. 32.
    Hahm K, Li Y, Evanseck JD, Houk KN, Foote CS (1993) Structures and energies of intermediates in the reactions of singlet oxygen with organic phosphines and sulfides. J Am Chem Soc 115:4879–4884. CrossRefGoogle Scholar
  33. 33.
    Withnal R, Andrews L (1987) FTIR spectra of the photolysis products of the phosphine-ozone complex in solid argon. J Phys Chem 91:784–797. CrossRefGoogle Scholar
  34. 34.
    Dannley RL, Karbe KR (1965) The synthesis and reactions of bisdiphenylphosphinic peroxide. J Am Chem Soc 87:4805–4810. CrossRefGoogle Scholar
  35. 35.
    Liang JJ, Gu CL, Kacher ML, Foote CS (1983) Chemistry of singlet oxygen. 45. Mechanism of the photooxidation of sulfides. J Am Chem Soc 105:4717–4721. CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Ando W, Ohgaki H, Kabe Y (1994) Stable germirane derivatives. Angew. Chem. Intl. Ed. Engl. 33:659–661. CrossRefGoogle Scholar
  38. 38.
    Appel R, Gaitzsch T, Knoch F (1985) The first arsirane. Angew Chem Intl Ed Engl 24:419–420. CrossRefGoogle Scholar
  39. 39.
    Ohgaki H, Kabe Y, Ando W (1995) Reaction of a germylene with ethylene: a stable digermacyclobutane via a germirane intermediate. Organometallics 14:2139. CrossRefGoogle Scholar
  40. 40.
    Back RA (1984) The preparation, properties and reactions of diimide. Rev Chem Intermed 5:293–323. CrossRefGoogle Scholar
  41. 41.
    Huning S, Muller HR, Thier W (1965) Zur Chemie des Diimins. Angew Chem 77:368–377. CrossRefGoogle Scholar
  42. 42.
    Miller CE (1965) Hydrogenation with diimide. J Chem Educ 42:254. CrossRefGoogle Scholar
  43. 43.
    Gould ES (ed) (1969) Mechanism and structure in organic chemistry. Holt, Rinehart and Winston, Inc.Google Scholar
  44. 44.
    Vlaar MJM, Lo MH, Ehlers AW, Schakel M, Lutz M, Spek AL, Lammertsma K (2002) Synthesis, structures, and strain energies of dispirophosphiranes. comparisons with dispirocyclopropanes. J Org Chem 67:2485. CrossRefPubMedGoogle Scholar
  45. 45.
    Dyakonenko VV, Maleev AV, Zbruyev AI, Chebanov VA, Desenkoa SM, Shishkin OV (2010) Layered crystal structure of bicyclic aziridines as revealed by analysis of intermolecular interactions energy. CrystEngComm 12:1816–1823. CrossRefGoogle Scholar
  46. 46.
    Ho F, Li Y, Mathey F (2012) Role of steric strain in the chemistry of Phosphiranes. Organometallics 31:8456–8458. CrossRefGoogle Scholar
  47. 47.
    Baeyer A (1885). Chem Ber 18:269–2281CrossRefGoogle Scholar
  48. 48.
    Greenberg A, Liebman JF (1978) Strained organic molecules. Academic Press, New YorkGoogle Scholar
  49. 49.
    Huisgen R (1986) Adolf von Baeyer's scientific achievements—a legacy. Angew Chem Int Ed Engl 25:297–311. CrossRefGoogle Scholar
  50. 50.
    Wade LG (ed) (2006) Structure and Stereochemistry of Alkanes. Organic Chemistry, 6th ed. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  51. 51.
    Romero A (2016) A theoretical conformational study on the structural parameters involved in the ring strain of exo-unsaturated four-membered heterocycles, Y = CCH2CH2X. Mol Phys 114:3040–3054. CrossRefGoogle Scholar
  52. 52.
    Romero A, Squitieri E (2016a) Effect of heterosubstituent and ring puckering angle on linear and nonlinear properties of exo-insaturated four-membered heterocycles, Y=CCH2CH2X: a comparative ab initio, DFT and semi-empirical study. Mol Phys 114:2232–2247CrossRefGoogle Scholar
  53. 53.
    Romero A, Squitieri E (2016b) Potential use of small asis set on the calculations of electronic properties of some four-membered heterocycles: a conformational study. Mol Phys 115:261–277. CrossRefGoogle Scholar
  54. 54.
    Romero A (2017) Calculations of molecular multipole electric moments of a series of exo-insaturated four-membered heterocycles, Y = CCH2CH2X. Mol Phys 115:2528–2546. CrossRefGoogle Scholar
  55. 55.
    Duved T, Lim C (1998) Ring strain energies from ab initio calculations. J Am Chem Soc 120:4450–4458. CrossRefGoogle Scholar
  56. 56.
    Cremer D, Kraka E (1985) Theoretical determination of molecular structure and conformation. 15. Three-membered rings: bent bonds, ring strain, and surface delocalization. J Am Chem Soc 107:3800–3810. CrossRefGoogle Scholar
  57. 57.
    Hinchliffe A, Soscun HJ (1997) Density functional studies of molecular polarizabilities. Part 5: cyclopropane and related compounds (cyclo-C2H4XHn where XHn = BH, AlH, GaH, CH2, SiH2, GeH2, NH, PH, AsH, O, S and Se). Electron J Theor Chem 2:255–262 CrossRefGoogle Scholar
  58. 58.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03W, Revision D.01. Gaussian, Inc, PittsburghGoogle Scholar
  59. 59.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many electron systems. Phys Rev 46:618–622. CrossRefGoogle Scholar
  60. 60.
    Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, New YorkCrossRefGoogle Scholar
  61. 61.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. CrossRefGoogle Scholar
  62. 62.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys RevLett 78:1396. CrossRefGoogle Scholar
  63. 63.
    Bartlett RJ (2010) The coupled-cluster revolution. Mol Phys 108:2905–2920. CrossRefGoogle Scholar
  64. 64.
    Bartlett RJ, Musial M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79:291. CrossRefGoogle Scholar
  65. 65.
    Bartlett RJ (2005) In: Dykstra C et al (eds) Theory and applications of computational chemistry: the first forty years, vol 42. Elsevier, New York, pp 1191–1221CrossRefGoogle Scholar
  66. 66.
    Crawford TD, Schaefer HF (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol ch. 2, vol. 14. VCH Publishers, New York, pp 33–136Google Scholar
  67. 67.
    Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910. CrossRefGoogle Scholar
  68. 68.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639–5648. CrossRefGoogle Scholar
  69. 69.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654. CrossRefGoogle Scholar
  70. 70.
    Peterson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Manzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193. CrossRefGoogle Scholar
  71. 71.
    Peterson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94:6081. CrossRefGoogle Scholar
  72. 72.
    Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–947. CrossRefGoogle Scholar
  73. 73.
    Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc 104:2797–2803. CrossRefGoogle Scholar
  74. 74.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007. CrossRefGoogle Scholar
  75. 75.
    Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian-basis sets for atoms li to Kr. J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  76. 76.
    Williams RA (1970) Handbook of the atomic elements. Lewis Reprints Limited, LondonGoogle Scholar
  77. 77.
    Kummli DD, Frey HM, Keller M, Leutwyler S (2005) Femtosecond degenerate four-wave mixing of cyclopropane. J Chem Phys 123:054308. CrossRefPubMedGoogle Scholar
  78. 78.
    Snyder RG, Schachtschneider JM (1965) A valence force field for saturated hydrocarbons. Spectrochim Acta 21:169–195. CrossRefGoogle Scholar
  79. 79.
    Bastiansen O, Fristsch FN, Hedberg K (1964) Least-squares refinement of molecular structures from gaseous electron-diffraction sector-microphotometer data. III. Refinement of cyclopropane. Acta Crystallogr 17:538–543 ( Scholar
  80. 80.
    Snyder RG, Zerbi G (1967) Vibrational analysis of ten simple aliphatic ethers: spectra, assignments, valence force field and molecular conformations. Spectrochim Acta 23A:391–437. CrossRefGoogle Scholar
  81. 81.
    Mitzel NW, Riede J, Kiener C (1997) The crystal structure of aziridine. Angew. Chem. Intl. Ed. Engl. 36:2215–2216. CrossRefGoogle Scholar
  82. 82.
    Cunnigham Jr GL, Boyd AW, Meyers RJ, Gwinn WD, LeVan WI (1951) Ibid, 19 676.Google Scholar
  83. 83.
    Demaison J, Csaszar AG, Margules LD, Rudolph HD (2011) Equilibrium structures of heterocyclic molecules with large principal axis rotations upon isotopic substitution. J Phys Chem A 115:14078–14091. CrossRefPubMedGoogle Scholar
  84. 84.
    Balzereit C, Kybart C, Winkler HJ, Massa W, Berndt A (1994) A 1,3-Diboratabenzene. Angew Chem Intl Ed 33:1487–1489. CrossRefGoogle Scholar
  85. 85.
    Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199. CrossRefGoogle Scholar
  86. 86.
    Brown G (2012) The inaccessible earth: an integrated view to its structure and composition. Springer Science & Business Media:88Google Scholar
  87. 87.
    Jensen F (1999a) Introduction to computational chemistry. Wiley, New YorkGoogle Scholar
  88. 88.
    Cramer CJ (2002a) Essentials of computational chemistry. Wiley, New YorkGoogle Scholar
  89. 89.
    Martin F, Zipse H (2005a) Charge distribution in the water molecule—a comparison of methods. J Comp Chem 26:97–105. CrossRefGoogle Scholar
  90. 90.
    Greenwood NN, Earnshaw A (1997) Chemistry of the elements (2nd Edn.). Butterworth-Heinemann, OxfordGoogle Scholar
  91. 91.
    Benson SW, Cruickshank F, Golden DM, Haugen GR, O’Neal HE, Rodgers AS, Shaw R, Walsh R (1969) Additivity rules for the estimation of thermochemical properties. Chem Rev 69:279–324. CrossRefGoogle Scholar
  92. 92.
    Eigenmann HK, Golden DM, Benson SW (1973) Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. J Phys Chem 77:1687–1691. CrossRefGoogle Scholar
  93. 93.
    Bratsch SG (1988). J Chem Educ 65:223CrossRefGoogle Scholar
  94. 94.
    Martin F, Zipse H (2005b). J Comput Chem 26:97–105CrossRefGoogle Scholar
  95. 95.
    Wiberg KB (1986) The concept of strain in organic chemistry. Angew Chem Int Ed Engl 25:312–322. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cátedra de Química General, Facultad de FarmaciaUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations