Skip to main content
Log in

Theoretical study of ferulic acid dimer derivatives: bond dissociation enthalpy, spin density, and HOMO-LUMO analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This article describes a theoretical study of four ferulic acid dimer derivatives, in order to obtain information about their reactivity towards free radicals and their antioxidant capacity. The results, of the studied structures, have been carefully studied by analyzing their molecular orbitals, spin density distribution, and bond dissociation enthalpies (BDEs), using the PBE0/6-311++G(2d,2p) method. Our results were compared with those already obtained experimentally in the literature by García-Conesa and co-workers, such comparisons show good agreement. These comparisons show that the results obtained from molecular orbitals and spin density distribution provide the most information about these molecular systems. The role of the OH group from the carboxyl groups, in all structures, is not very significant due to low electron delocalization, which is only located in the R–COO fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fazary AE, Ju YH (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochem Biophys Sin 39:811–828

    Article  CAS  Google Scholar 

  2. Lu GH, Chan K, Leung K, Chan CL, Zhao ZZ, Jiang ZH (2005). J Chromatogr A 1068:209–219

    Article  CAS  PubMed  Google Scholar 

  3. Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84(11):1261–1269

    Article  CAS  Google Scholar 

  4. Dobberstein D, Bunzel M (2010) Separation and detection of cell wall-bound ferulic acid dehydrodimers and dehydrotrimers in cereals and other plant materials by reversed phase high-performance liquid chromatography whit ultraviolet detection. J Agric Food Chem 58(16):8927–8935

    Article  CAS  PubMed  Google Scholar 

  5. Ndhlala AR, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules. Molecules 15(10):6905–6930

    Article  CAS  PubMed  Google Scholar 

  6. Sosulski F, Krygier K, Hogge L (1982) Free, esterified, and insoluble-bound phenolic acid. 3. Composition of phenolic acid in cereal and potato flours. J Agric Food Chem 30(2):337–340

    Article  CAS  Google Scholar 

  7. Williams RJ, Spencer JPE, Rice Evans C (2004) Serial review: flavonoids and isoflavones (phytoestrogens): absorption, metabolism, and bioactivity. Free Radic Biol Med 36(7):838

    Article  CAS  PubMed  Google Scholar 

  8. Andreasen MF, Christensen LP, Meyer AS, Hansen Å (2000) Content of phenolic acid and ferulic acid dehydrodimers in 17 rye (Secale cerale L.) varieties. J Agric Food Chem 48(7):2837–2842

    Article  CAS  PubMed  Google Scholar 

  9. Wallace G, Fry SC (1994) Phenolic components of the plant cell wall. Int Rev Cytol 151:229–267

    Article  CAS  PubMed  Google Scholar 

  10. Harris PJ, Hartley RD (1976) Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259:508–510

    Article  CAS  Google Scholar 

  11. Klepacka J, Fornal L (2006) Ferulic acid and its position among the phenolic compounds of wheat. Crit Rev Food Sci Nut 46(8):639–647

    Article  CAS  Google Scholar 

  12. Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127

    Article  CAS  Google Scholar 

  13. Larsen E, Andreasen MF, Christense LP (2001) Regioselective dimerization of ferulic acid in a micellar solution. J Agric Food Chem 49(7):3471–3475

    Article  CAS  PubMed  Google Scholar 

  14. Markwalder UH, Neukon H (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15(5):836–837

    Article  CAS  Google Scholar 

  15. Ralph J, Quideau S, Grabber JH, Hatfield RD (1994) Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin Trans 1(23):3485–3498

    Article  Google Scholar 

  16. Adelakun OE, Kudanga T, Parker A, Green IR, Roes-Hill ML, Burton SG (2012) Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. J Mol Catal B Enzym 74(1–2):29–35

    Article  CAS  Google Scholar 

  17. Barrios-Rios J, Santiago R, Jung H-JG, Malvar RA (2015) Covalent cross-linking of cell-wall polysaccharides through esterified diferulates as maize resistance mechanism against corn borers. J Agric Food Chem 63:2206–2214

    Article  CAS  Google Scholar 

  18. Neudörffer A, Bonnefont-Rousselot D, Legrand A, Fleury MB, Largeron M (2004) 4-Hydroxycinnamic ethyl ester derivatives and related dehydridimers: relationship between oxidation potential and protective effects against oxidation of low-density lipoproteins. J Agric Food Chem 52(7):2084–2091

    Article  CAS  PubMed  Google Scholar 

  19. Bunzel M, Ralph J, Funk C (2003) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Technol 2017:128–133

    Article  CAS  Google Scholar 

  20. Arrieta-Baez D, Stark RE (2006) Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: cross-coupling and dimerization reactions. Phytochemistry 67:743–753

    Article  CAS  PubMed  Google Scholar 

  21. Bunzel M, Ralph J, Marita J, Steinhart H (2000) Identification of 4-O-5′-coupled diferulic acid from insoluble cereal fiber. J Agric Food Chem 48(8):3166–3169

    Article  CAS  PubMed  Google Scholar 

  22. Bunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 81(7):653–660

    Article  CAS  Google Scholar 

  23. García-Conesa M, Wilson PD, Plumb GW, Ralph J, Williamson G (1999) Antioxidant properties of 4,4′-dihydroxy-3,3′-dimethoxy-β-β´-bicinnamic acid (8-8-diferulic acid, non-cyclic form). J Sci Food Agric 79(3):379–384

    Article  Google Scholar 

  24. Jaramillo S, Rodríguez R, Jiménez A, Guillén R, Fernández-Bolaños J, Heredia A (2007) Effects of storage conditions on the accumulation of ferulic acid derivatives in white asparagus cell walls. J Sci Food Agric 87(2):286–296

    Article  CAS  Google Scholar 

  25. Renger A, Steinhart H (2000) Ferulic acid dehydrodimers as structural elements in cereal dietary fibre. Eur Food Res Technol 211(6):422–428

    Article  CAS  Google Scholar 

  26. Shahiddi F, Chandrasekara A (2010) Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem Rev 9(1):147–170

    Article  CAS  Google Scholar 

  27. Vakarelska-Popovska MH, Velkov Z (2012) Monohydroxy flavones. Part IV: enthalpies of different ways of O-H bond dissociation. Comput Theor Chem 991:192–200

    Article  CAS  Google Scholar 

  28. Guzman R, Santiago C, Sánchez M (2009) A density functional study of antioxidant properties on anthocyanidins. J Mol Struct 935(1–3):110–114

    Article  CAS  Google Scholar 

  29. Ali HM, Ali IH (2017) A DFT and QSAR study of the role of hydroxyl group, charge and unpaired-electron distribution in anthocyanidin radical stabilization and antioxidant activity. Mod Chem Res 26:2666–2674

    Article  CAS  Google Scholar 

  30. Ali HM, Ali IH (2018) Energetic and electronic computation of the two-hydrogen atom donation process in catecholic and non-catecholic anthocyanidins. Food Chem 243:145–150

    Article  CAS  PubMed  Google Scholar 

  31. Leopoldini M, Rondinelli F, Russo N, Toscano M (2010) Pyranoanthocyanins: a theoretical investigation on their antioxidant activity. J Agric Food Chem 58:8862–8871

    Article  CAS  PubMed  Google Scholar 

  32. Lu L, Qiang M, Li F, Zhang H, Zhang S (2014) Theoretical investigation on the antioxidative activity of anthocyanidins: a DGT/B3LYP study. Dyes Pigments 103:175–182

    Article  CAS  Google Scholar 

  33. Mazzone G, Russo N, Toscano M (2016) Antioxidant properties comparative study of natural hydroxycinnamic acid and structurally modified derivatives: computational insights. Comput Theor Chem 1077:39–47

    Article  CAS  Google Scholar 

  34. Russell WR, Scobbie L, Chesson A (2005) Structural modification of phenylpropanoid-derived compounds and the effects on their participation in redox processes. Bioorg Med Chem 13(7):2537–2546

    Article  CAS  PubMed  Google Scholar 

  35. Thomas SP, Pavan MS, Row Guru TN (2012) Charge density analysis of ferulic acid: robustness of a trifurcated C-H...O hydrogen bond. Cryst Growth Des 12(12):6083–6071

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  37. Adamo C, Banore D (1999) Toward reliable density functional methods without adjustable parameters: the PBEO model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  38. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Phys Chem 72(1):650–654

    Article  CAS  Google Scholar 

  39. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985

    Article  CAS  Google Scholar 

  40. Treml J, Šmejkal K (2016) Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf 15:720–738

    Article  CAS  Google Scholar 

  41. Wang A, Lu Y, Du X, Shi P, Zhang H (2018) A theoretical study on the antioxidant activity of Uralenol and Neouralenol scavenging two radicals. Struct Chem 12(1):e0169773

    Google Scholar 

  42. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123(6):1173–1183

    Article  CAS  PubMed  Google Scholar 

  43. Parkinson CJ, Mayer PML, Radom L (1999) An assessment of theoretical procedures for the calculation of reliable radical stabilization energies. J Chem Soc Perkin Trans 2(11):2305–2313

    Article  Google Scholar 

  44. Honório KM, Da Silva ABF (2003) An AM1 study on the electron-donating and electron-accepting character of biomolecules. Int J Quantum Chem 95(2):126–132

    Article  CAS  Google Scholar 

  45. Marković Z, Đorović J, Dimitrić Marković JM, Živić M, Amić D (2014) Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions. Monatsh Chem 145(6):953–962

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. H.-G. thanks the CONACyT for the financial support (project number 175913), and J. S.-L. thanks the SNER and CONACyT for the postdoctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Sanchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-García, L., Sandoval-Lira, J., Rosete-Luna, S. et al. Theoretical study of ferulic acid dimer derivatives: bond dissociation enthalpy, spin density, and HOMO-LUMO analysis. Struct Chem 29, 1265–1272 (2018). https://doi.org/10.1007/s11224-018-1107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1107-3

Keywords

Navigation