Structural Chemistry

, Volume 28, Issue 6, pp 1969–1979 | Cite as

Mechanism study on the copper-free click reaction of a coumarin-conjugated cyclooctyne

  • Setayesh Ghandiyar
  • Mahshid Hamzehloueian
  • Rahman Hosseinzadeh
Original Research

Abstract

The mechanism of a bioortogonal click reaction between 2-azidoethanol and coumBARAC has been examined using DFT methods at B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) computational levels. The regiochemistry of the reaction has been studied based on potential energy surface analysis and global reactivity indices of the reactants. The global electron density transfer (GEDT) calculations at the possible transition states (TSs) revealed that this cycloaddition (CA) has a nearly non-polar character. The strain and electronic effects on the reactivity of coumBARAC with 2-azidoethanol was studied using distortion/interaction transition state model and compared with CA reaction of this dipole with phenylacetylene as a strain-free reaction. The IRC calculations and the topological electron localization function (ELF) analysis explain properly the one-step two-stage mechanism of this strain-promoted CA reaction, as well as the effects of the strain on the electronic structure of cycloalkynes and the activation energy barriers of CA reactions. By application of bonding evolution theory (BET), nine successive domains of structural stability have been recognized along the reaction path, as well as the bifurcation catastrophes responsible for the changes in the topology of the system.

Keywords

DFT Cycloaddition Strain-promoted Distortion/interaction model ELF Click BET 

Notes

Acknowledgments

The authors acknowledge the University of Mazandaran and Islamic Azad University, Jouybar Branch for financial support of this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_991_MOESM1_ESM.pdf (1.3 mb)
ESM 1 The online version of this article (doi:) contains supplementary material, which is available to authorized users. (PDF 1371 kb)

References

  1. 1.
    Kuijpers BHM, Groothuys S, Keereweer AR, Quaedflieg PJLM, Blaauw RH, Van Delft FL, Rutjes FPJT (2004) Expedient synthesis of triazole-linked glycosyl amino acids and peptides Org Lett 6:3123–3126. doi: 10.1021/ol048841o CrossRefGoogle Scholar
  2. 2.
    Dondoni A, Giovannini PP, Massi A (2004) Assembling heterocycle-tethered C-glycosyl and α-amino acid residues via 1,3-dipolar cycloaddition reactions Org Lett 6:2929–2932. doi: 10.1021/ol048963g CrossRefGoogle Scholar
  3. 3.
    Link AJ, Tirrell DA (2003) Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition J Am Chem Soc 125:11164–11165. doi: 10.1021/ja036765z CrossRefGoogle Scholar
  4. 4.
    Dirks AJ(T), van Berkel SS, Hatzakis NS, Opsteen JA, van Delft FL, JJLM C, Rowan AE, van Hest JCM, FPJT R, RJM N (2005) Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3 + 2] dipolar cycloaddition reaction Chem Commun (Camb) 13:4172–4174. doi: 10.1039/b508428h CrossRefGoogle Scholar
  5. 5.
    Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition J Am Chem Soc 125:3192–3193. doi: 10.1021/ja021381e CrossRefGoogle Scholar
  6. 6.
    Sen GS, Kuzelka J, Singh P, Lewis WG, Manchester M, Finn MG (2005) Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold Bioconjug Chem 16:1572–1579. doi: 10.1021/bc050147l CrossRefGoogle Scholar
  7. 7.
    Rhiannon K. Iha, Karen L. Wooley, Andreas M. Nystro¨m, Daniel J. Burke, Matthew J. Kade A, Hawker CJ (2009) Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem Rev 109:5620–5686. doi:  10.1021/cr900138t
  8. 8.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts Chem Soc Rev 38:1450–1459. doi: 10.1039/b807080f CrossRefGoogle Scholar
  9. 9.
    Manetsch R, Krasiński A, Radić Z, Raushel J, Taylor P, Sharpless KB, Kolb HC (2004) In situ click chemistry: enzyme inhibitors made to their own specifications J Am Chem Soc 126:12809–12818. doi: 10.1021/ja046382g CrossRefGoogle Scholar
  10. 10.
    Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems J Am Chem Soc 126:15046–15047. doi: 10.1021/ja044996f CrossRefGoogle Scholar
  11. 11.
    Zayas J, Annoual M, Das JK, Felty Q, Gonzalez WG, Miksovska J, Sharifai N, Chiba A, Wnuk SF (2015) Strain promoted click chemistry of 2- or 8-Azidopurine and 5-Azidopyrimidine nucleosides and 8-Azidoadenosine triphosphate with cyclooctynes. Application to living cell fluorescent imaging Bioconjug Chem 26:1519–1532. doi: 10.1021/acs.bioconjchem.5b00300 CrossRefGoogle Scholar
  12. 12.
    Orski SV, Poloukhtine AA, Arumugam S, Mao L, Popik VV, Locklin J (2010) High density orthogonal surface immobilization via photoactivated copper-free click chemistry J Am Chem Soc 132:11024–11026. doi: 10.1021/ja105066t CrossRefGoogle Scholar
  13. 13.
    Ramil CP, Lin Q (2013) Bioorthogonal chemistry: strategies and recent developments Chem Commun 49:11007–11022. doi: 10.1039/C3CC44272A CrossRefGoogle Scholar
  14. 14.
    Jewett JC, Sletten EM, Bertozzi CR (2010) Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones J Am Chem Soc 132:3688–3690. doi: 10.1021/ja100014q CrossRefGoogle Scholar
  15. 15.
    Ess DH, Houk KN (2008) Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models J Am Chem Soc 130:10187–10198. doi: 10.1021/ja800009z CrossRefGoogle Scholar
  16. 16.
    Ess DH, Houk KN (2007) Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity J Am Chem Soc 129:10646–10647. doi: 10.1021/ja0734086 CrossRefGoogle Scholar
  17. 17.
    Ess DH, Jones GO, Houk KN (2008) Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes Org Lett 10:1633–1636. doi: 10.1021/ol8003657 CrossRefGoogle Scholar
  18. 18.
    Gordon CG, MacKey JL, Jewett JC, Sletten EM, Houk KN, Bertozzi CR (2012) Reactivity of biarylazacyclooctynones in copper-free click chemistry J Am Chem Soc 134:9199–9208. doi: 10.1021/ja3000936 CrossRefGoogle Scholar
  19. 19.
    Savin A (2005) The electron localization function (ELF) and its relatives: interpretations and difficulties J Mol Struct THEOCHEM 727:127–131. doi: 10.1016/j.theochem.2005.02.034 CrossRefGoogle Scholar
  20. 20.
    Domingo LR, Sáez JA (2011) Understanding the electronic reorganization along the nonpolar [3 + 2] Cycloaddition reactions of carbonyl Ylides J Org Chem 76:373–379. doi: 10.1021/jo101367v CrossRefGoogle Scholar
  21. 21.
    Domingo LR, Chamorro E, Perez P (2010) Understanding the high reactivity of the azomethine ylides in {[}3+2] cycloaddition reactions Lett Org Chem 7:432–439. doi: 10.2174/157017810791824900 CrossRefGoogle Scholar
  22. 22.
    Domingo LR (2014) A new C–C bond formation model based on the quantum chemical topology of electron density RSC Adv 4:32415. doi: 10.1039/C4RA04280H CrossRefGoogle Scholar
  23. 23.
    Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by catastrophe theory J Phys Chem A 101:7277–7282. doi: 10.1021/jp9711508 CrossRefGoogle Scholar
  24. 24.
    Krokidis X, Goncalves V, Savin A, Silvi B (1998) How malonaldehyde bonds change during proton transfer J Phys Chem A 102:5065–5073. doi: 10.1021/jp9734282 CrossRefGoogle Scholar
  25. 25.
    Kalinowski J, Berski S, Latajka Z (2011) AIM and BET approach for ionic and covalent bond evolution in reaction of hydrogen elimination from ammonia and lithium hydride Chem Phys Lett 501:587–593. doi: 10.1016/j.cplett.2010.11.053 CrossRefGoogle Scholar
  26. 26.
    Thom R (1974) Stabilité structurelle et morphogenèse Poetics 3:7–19. doi: 10.1016/0304-422X(74)90010-2 CrossRefGoogle Scholar
  27. 27.
    Polo V, Andres J, Castillo R, Berski S, Silvi B (2004) Understanding the molecular mechanism of the 1,3-dipolar cycloaddition between fulminic acid and acetylene in terms of the electron localization function and catastrophe theory Chem - A Eur J 10:5165–5172. doi: 10.1002/chem.200400161 CrossRefGoogle Scholar
  28. 28.
    Domingo LR, Ríos-Gutiérrez M, Pérez P (2017) A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitrones with strained allenes RSC Adv 7:26879–26887. doi: 10.1039/C7RA01916E CrossRefGoogle Scholar
  29. 29.
    Jewett JC, Bertozzi CR (2011) Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry Org Lett 13:5937–5939. doi: 10.1021/ol2025026 CrossRefGoogle Scholar
  30. 30.
    Hamzehloueian M, Yeganegi S, Sarrafi Y, Alimohammadi K, Sadatshahabi M (2014) A theoretical investigation on the regioselectivity of the intramolecular hetero Diels-Alder and 1,3-dipolar cycloaddition reactions of 2-(vinyloxy)benzaldehyde derivatives J Serbian Chem Soc 79:911–920. doi: 10.2298/JSC140121012H CrossRefGoogle Scholar
  31. 31.
    Sarrafi Y, Hamzehlouian M, Alimohammadi K, Khavasi HR (2010) Regioselective synthesis of novel spiroindane-1,3-diones through 1,3-dipolar cycloaddition reactions Tetrahedron Lett 51:4734–4737. doi: 10.1016/j.tetlet.2010.07.018 CrossRefGoogle Scholar
  32. 32.
    Sarrafi Y, Asghari A, Hamzehloueian M, Alimohammadi K, Sadatshahabi M (2013) A facile regioselective synthesis of novel spiroacenaphthene pyrroloisoquinolines through 1,3-dipolar cycloaddition reactions.J. Braz. Chem. Soc, pp. 1957–1963Google Scholar
  33. 33.
    Sarrafi Y, Sadatshahabi M, Hamzehloueian M, Alimohammadi K, Tajbakhsh M (2013) Synthesis of functionalized Pyrrolizidines/Pyrrolidines incorporating a Spirooxindole motif through [3+2] Cycloaddition Synthesis (Stuttg) 45:2294–2304. doi: 10.1055/s-0033-1338492 CrossRefGoogle Scholar
  34. 34.
    Alimohammadi K, Sarrafi Y, Tajbakhsh M, Yeganegi S, Hamzehloueian M (2011) An experimental and theoretical investigation of the regio- and stereoselectivity of the polar [3+2] cycloaddition of azomethine ylides to nitrostyrenes Tetrahedron 67:1589–1597. doi: 10.1016/j.tet.2010.12.034 CrossRefGoogle Scholar
  35. 35.
    Sarrafi Y, Hamzehloueian M, Alimohammadi K, Yeganegi S (2012) Experimental and theoretical approaches to [1,5]-prototropic generation of an azomethine ylide and a 1,3-dipolar cycloaddition for novel spiropyrrolidine oxindoles synthesis J Mol Struct 1030:168–176. doi: 10.1016/j.molstruc.2012.04.013 CrossRefGoogle Scholar
  36. 36.
    Shahrestani N, Salahi F, Tavakoli N, Jadidi K, Hamzehloueian M, Notash B (2015) Asymmetric synthesis approach of enantiomerically pure spiro-indenoquinoxaline pyrrolidines and spiro-indenoquinoxaline pyrrolizidines Tetrahedron Asymmetry 26:1117–1129. doi: 10.1016/j.tetasy.2015.08.013 CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford, Google Scholar
  38. 38.
    Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance J Chem Theory Comput 3:289–300. doi: 10.1021/ct6002719 CrossRefGoogle Scholar
  39. 39.
    Fukui K (1970) Formulation of the reaction coordinate J Phys Chem 74:4161–4163. doi: 10.1021/j100717a029 CrossRefGoogle Scholar
  40. 40.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model J Phys Chem A 102:1995–2001. doi: 10.1021/jp9716997 CrossRefGoogle Scholar
  41. 41.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint Chem Rev 88:899–926. doi: 10.1021/cr00088a005 CrossRefGoogle Scholar
  42. 42.
    Reed A, Weinstock R, Weinhold F (1985) Natural population analysis J Chem Phys 83:735. doi: 10.1063/1.449486 CrossRefGoogle Scholar
  43. 43.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis Comput Chem 23:597–604. doi: 10.1016/S0097-8485(99)00039-X CrossRefGoogle Scholar
  44. 44.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity J Am Chem Soc 105:7512–7516. doi: 10.1021/ja00364a005 CrossRefGoogle Scholar
  45. 45.
    Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials J Mol Struct THEOCHEM 865:68–72. doi: 10.1016/j.theochem.2008.06.022 CrossRefGoogle Scholar
  46. 46.
    Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry Org Biomol Chem 9:7168–7175. doi: 10.1039/c1ob05856h CrossRefGoogle Scholar
  47. 47.
    Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions A theoretical study J Org Chem 73:4615–4624. doi: 10.1021/jo800572a Google Scholar
  48. 48.
    Domingo LR, Pérez P, Sáez J a. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions RSC Adv 3:1486–1494. doi: 10.1039/C2RA22886F CrossRefGoogle Scholar
  49. 49.
    Gold B, Shevchenko NE, Bonus N, Dudley GB, Alabugin IV (2012) Selective transition state stabilization via hyperconjugative and conjugative assistance: Stereoelectronic concept for copper-free click chemistry J Org Chem 77:75–89. doi: 10.1021/jo201434w CrossRefGoogle Scholar
  50. 50.
    Pérez P, Domingo LR (2015) A DFT study of inter- and Intramolecular Aryne Ene reactions European J Org Chem 2015:2826–2834. doi: 10.1002/ejoc.201500139 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Department of Chemistry, Jouybar BranchIslamic Azad UniversityJouybarIran

Personalised recommendations