Structural Chemistry

, Volume 28, Issue 6, pp 1953–1958 | Cite as

Thermodynamic and orbital studies of the reactivity of amidine with phosphoryl chloride and thionyl chloride

Original Research
  • 170 Downloads

Abstract

Amidines belong to the family of organic superbases; they are generally considered among the strongest useful synthetic auxiliary bases and are widely used in the synthesis of N-heterocycles. In this present work, we have studied the thermodynamic and the orbital recovery of the cyclization reaction of N'-(1H-benzo[d]imidazol-2-yl)-N-cyclopentylacetamidine 1 towards two reagents: the phosphoryl chloride (POCl3) 2 and thionyl chloride (SOCl2) 3. We were particularly interested in studying the different reactivity of the different sites of attack of the N'-(1H-benzo[d]imidazol-2-yl)-N-cyclopentylacetamidine 1, using density functional theory calculations (DFT) with functional B3LYP and standard base 6-311G. We used all the gathered information either from the experimental results obtained for these reactions or from the theoretical study; to exemplify the reactivity of each active site in our amidine 1, among this particular type of reaction under controlled condition to finally elucidate the mechanism of the obtaining of N-heterocycles such as the [1,2a]benzimidazolo-1,3,5,2-triazaphosphorin-2-oxide 6 and the [1,2a]benzimidazolo-1,2,4,6-thiatriazin-1-oxide 7.

Keywords

Amidine DFT Thermodynamic Frontier orbital Phosphoryl chloride Thionyl chloride heterocycle 

Notes

Acknowledgments

Authors thank the Tunisian Secretary of State for Scientific Research and Technology for the financial support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by ministry of high education of Tunisia.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The manuscript has not been previously published, is not currently submitted for review to any other journal, and will not be submitted elsewhere before a decision is made by this journal.

References

  1. 1.
    Sharabi-Ronen Y, Levinger S, Lellouche M, Albeck A (2013) Anti-neoplastic activity of 1,3-diaza-2-functionalized-adamantan-6-one compounds against melanoma cells Med Chem 10:27–37. doi: 10.2174/15734064113099900002 CrossRefGoogle Scholar
  2. 2.
    Chen W, Zhan P, De Clercq E, Pannecouque C, Balzarini J, Jiang X, Liu X (2013) Design, synthesis and biological evaluation of N2,N4-disubstituted-1,1,3-trioxo-2H,4H-pyrrolo[1,2-b][1,2,4,6]thiatriazine derivatives as HIV-1 NNRTIs Bioorg Med Chem 21:7091–7100. doi: 10.1016/j.bmc.2013.09.009 CrossRefGoogle Scholar
  3. 3.
    Krátky M, Vinsova J (2016) Sulphur-containing heterocycles as antimycobacterial agents: recent advances in thiophene and thiadiazole derivatives Curr Top Med Chem 16:2921–2952. doi: 10.2174/1568026616666160506131118 CrossRefGoogle Scholar
  4. 4.
    El-Sakka IA, Hassan NA (2005) Synthetic uses of thionyl chloride J Sulfur Chem 26:33–97. doi: 10.1080/17415990500031187 CrossRefGoogle Scholar
  5. 5.
    Alexakis A, Mutti S, Mangeney P (1992) A new reagent for the determination of the optical purity of primary, secondary, and tertiary chiral alcohols and of thiols J Organomet Chem 57:1224–1237. doi: 10.1021/jo00030a034 CrossRefGoogle Scholar
  6. 6.
    Aly AA, Nour-El-Din AM (2008) Functionality of amidines and amidrazones ARKIVOC. doi: 10.3998/ark.5550190.0009.106
  7. 7.
    Hichri S, Abderrahim R (2015) A convenient synthesis of 1,3,2-benzodiazaphophorine-2-oxide Phosphorus Sulfur Silicon Relat Elem 190:29–35. doi: 10.1080/10426507.2014.914931 CrossRefGoogle Scholar
  8. 8.
    Hichri S, Abderrahim R (2016) Synthesis of 1,3,2-benzodiazaphosphorine and 1,3,2-benzodiazaphosphorine-2-sulfide Lett Org Chem 13:289–292. doi: 10.2174/1570178613666160224005908 CrossRefGoogle Scholar
  9. 9.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision A.1. Gaussian, Inc., Pittsburgh, Google Scholar
  10. 10.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  11. 11.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields J Phys Chem 98:11623–11627. doi: 10.1021/j100096a001 CrossRefGoogle Scholar
  12. 12.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system Phys Rev B 54:16533–16539. doi: 10.1103/PhysRevB.54.16533 CrossRefGoogle Scholar
  13. 13.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  14. 14.
    Goldstein E, Beno B, Houk KN (1996) Density functional theory prediction of the relative energies and isotope effects for the concerted and stepwise mechanisms of the Diels−Alder reaction of butadiene and ethylene J Am Chem Soc 118:6036–6043. doi: 10.1021/ja9601494 CrossRefGoogle Scholar
  15. 15.
    Ayadi S, Abderrabba M (2007) Étude DFT des réactions de cycloaddition de type Diels–Alder sur le 4-aza-6-nitrobenzofuroxane Can J Chem 85:331–335. doi: 10.1139/v07-026 CrossRefGoogle Scholar
  16. 16.
    Rivial, J.L. 1994 éléments de chimie quantique à l’usage des chimistes, C.N.R.S éditions.Google Scholar
  17. 17.
    Ayadi S, Abderrabba M (2010) Étude DFT des réactions d’hydrogénation des cyclohéxènes disubstitués en position 2 et 3 Can J Chem 88:613–621. doi: 10.1139/V10-062 CrossRefGoogle Scholar
  18. 18.
    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels−Alder Reactions J Phys Chem A 106:6871–6875. doi: 10.1021/jp020715j CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Maroua Bourkhis
    • 1
  • Sameh Ayadi
    • 2
  • Raoudha Abderrahim
    • 1
  1. 1.Laboratory of Physics of Lamellaires Materials and Hybrids NanomaterialsUniversity of Carthage, Faculty of Sciences of BizerteBizerteTunisia
  2. 2.Institut National des Sciences et Technologies de la Mer (INSTM)La GouletteTunisia

Personalised recommendations