Structural Chemistry

, Volume 28, Issue 6, pp 1935–1952 | Cite as

DFT-based investigation on adsorption of methane on pristine and defected graphene

Original Research
  • 264 Downloads

Abstract

The investigation of methane adsorption on surface of graphene is of high interest as graphene can be tuned as required, also the favorable adsorption properties may be employed to create cost-effective novel storage devices. In the present study, we investigate the adsorption characteristics of methane (CH4) on eight different kinds of hydrogen-capped graphene sheet with variable and high number of carbon atoms using density functional theory methods. Our results infer that the methane adsorption is high on defected graphene than that of pristine and less charge transfer between CH4 and graphene. The physisorbed methane molecule on graphene sheet has enhanced adsorption energy with a high number of carbon atoms and the value is −0.184 and −0.185 eV (pristine graphene) and −0.188 and −0.191 eV (defected graphene). Due to high barrier, the transfer of electrons from graphene to methane is hard rather than methane to graphene. Further, it is found that the energy gap value of the hydrogen-capped graphene sheets decreases upon adsorption of methane. The reduced density gradient (RDG) scatter graph shows the interaction to be weak van der Waals interaction with the steric repulsion in the graphene sheet.

Keywords

Pristine and defected graphene Methane adsorption RDG analysis Physisorption Density of states (DOS) 

Notes

Acknowledgments

One of the authors (SV) highly acknowledges the Department of Science and Technology (DST-SERB), Government of India, for the financial support in the form of a project under Grant SR/FTP/PS-115/2011.

References

  1. 1.
    Baxter J, Bian Z, Chen G, Danielson D, Dresselhaus MS, Fedorov AG, Fisher TS, Jones CW, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison DR, Sands T, Shi L, Wu Y (2009) Energy Environ 2:559–588Google Scholar
  2. 2.
    Morris RE, Wheatley PS (2008) Angew Chem Int Ed 47:4966–4981CrossRefGoogle Scholar
  3. 3.
    Saha D, Bao Z, Jia F, Deng S (2010) Environ Sci Technol 44:1820–1826CrossRefGoogle Scholar
  4. 4.
    Mendoza-cortes JL, Pascal TA, Goddard WA (2011) J Phys Chem A 115:13852–13857CrossRefGoogle Scholar
  5. 5.
    Zhou L, Liu X, Sun Y, Li J, Zhou Y (2005) J Phys Chem B 109:22710–22714CrossRefGoogle Scholar
  6. 6.
    Kowalczyk P, Brualla L, Andrzej Z, Bhatia SK (2007) J Phys Chem C 111:5250–5257CrossRefGoogle Scholar
  7. 7.
    Wang S (2007) Energy Fuel 21:953–956CrossRefGoogle Scholar
  8. 8.
    Lee J, Balathanigaimani MS, Kang H, Shim W, Kim C, Moon H (2007) J Chem Eng Data 52:66–70CrossRefGoogle Scholar
  9. 9.
    Morales-cas AM, Moya C, Coto B, Vega LF, Calleja G (2007) J Phys Chem C 111:6473–6480CrossRefGoogle Scholar
  10. 10.
    Gallo M, Glossman-mitnik D (2009) J Phys Chem C 113:6634–6642CrossRefGoogle Scholar
  11. 11.
    Chakraborty SN, Gelb LD (2012) J Phys Chem B 116:2183–2197CrossRefGoogle Scholar
  12. 12.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197–200CrossRefGoogle Scholar
  13. 13.
    Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI, Geim AK (2008) Nano Lett 8:2442–2446CrossRefGoogle Scholar
  14. 14.
    Thierfelder C, Witte M, Blankenburg S, Rauls E, Schmidt WG (2011) Surf Sci 605:746–749CrossRefGoogle Scholar
  15. 15.
    Kim HK, Chan MHW (1984) Phys Rev Lett 53:170–173CrossRefGoogle Scholar
  16. 16.
    Brenner K, Yang Y, Murali R (2011) Carbon 50:637–645CrossRefGoogle Scholar
  17. 17.
    Thrower PA (1969) In: Walker PL (ed) Chemistry and physics of carbon. Dekker, New YorkGoogle Scholar
  18. 18.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501–503CrossRefGoogle Scholar
  19. 19.
    Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86–91CrossRefGoogle Scholar
  20. 20.
    Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theory Comput 6:1351–1357CrossRefGoogle Scholar
  21. 21.
    Motahari S, Shayeganfar F, Neek-amal M (2012) Solid State Commun 152:225–230CrossRefGoogle Scholar
  22. 22.
    Reddy CD, Ramasubramaniam A, Shenoy VB, Zhang YW (2009) Appl Phys Lett 94:101904CrossRefGoogle Scholar
  23. 23.
    Sun C, Boutilier MSH, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou NG (2014) Langmuir 30:675–682CrossRefGoogle Scholar
  24. 24.
    Jiang D, Cooper VR, Dai S (2009) Nano Lett 9:4019–4024CrossRefGoogle Scholar
  25. 25.
    Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Nanotechnology 20:185504CrossRefGoogle Scholar
  26. 26.
    Boukhvalov DW, Katsnelson MI (2008) Nano Lett 8:4374–4379CrossRefGoogle Scholar
  27. 27.
    Hassani A, Taghi M, Mosavian H, Ahmadpour A, Farhadian N (2016) Comput Theor Chem 1084:43–50CrossRefGoogle Scholar
  28. 28.
    Denis PA (2008) Chem Phys 353:79–86CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi Pomelli RC, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford Google Scholar
  30. 30.
    Tachikawa H, Iyama T (2014) Solid State Sci 28:41–46CrossRefGoogle Scholar
  31. 31.
    Umadevi D, Sastry GN (2014) Curr Sci 106:1224–1234Google Scholar
  32. 32.
    Lu T Multiwfn 2.1, http://multiwfn.codeplex.com/
  33. 33.
    Skowron ST, Lebedeva IV, Popov AM, Bichoutskaia E (2015) Chem Soc Rev 44:3143–3176CrossRefGoogle Scholar
  34. 34.
    Zhu Y, Su H, Jing Y, Guo J, Tang J (2016) Appl Surf Sci 387:379–384CrossRefGoogle Scholar
  35. 35.
    Carrillo I, Rangel E, Magan LF (2009) Carbon 7:2758–2760CrossRefGoogle Scholar
  36. 36.
    Qiu N, Xue Y, Guo Y, Sun W, Chu W (2012) Comput Theor Chem 992:37–47CrossRefGoogle Scholar
  37. 37.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010) J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  38. 38.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph Model 14:33–38CrossRefGoogle Scholar
  39. 39.
    Kose E, Karabacak M, Bardak F, Atac A (2016) J Mol Struct 1123:284–299CrossRefGoogle Scholar
  40. 40.
    Li D, Yang Y, Li C, Liu Y (2017) J Lumin 182:15–21CrossRefGoogle Scholar
  41. 41.
    Chithiraikumar S, Gandhimathi S, Neelakantan MA (2017) J Mol Struct 1137:569–580CrossRefGoogle Scholar
  42. 42.
    Son Y, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Medical PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations