Structural Chemistry

, Volume 28, Issue 6, pp 1927–1934 | Cite as

Asymmetric triiodide-diiodine interactions in the crystal of (Z)-4-chloro-5-((2-((4-chloro-5H-1,2,3-dithiazol-5-ylidene)amino)phenyl)amino)-1,2,3-dithiazol-1-ium oligoiodide

  • O.I. Bol’shakov
  • I.D. Yushina
  • E.V. Bartashevich
  • Y.V. Nelyubina
  • R.R. Aysin
  • O.A. Rakitin
Original Research


The crystal structure and properties of (Z)-4-chloro-5-((2-((4-chloro-5H-1,2,3-dithiazol-5-ylidene)amino)phenyl)amino)-1,2,3-dithiazol-1-ium oligoiodide (C2/c) synthesized from the initial bis(4-сhloro-5H-1,2,3-dithiazolo-5-ylidene)benzene-1,2-diamine (P21/c) have been characterized by various experimental and theoretic methods. The superposition of atomic basin boundaries in the electron density and in the electrostatic potential does not confirm the halogen bonding between the triiodide anion and sulfur atoms in cation. On the other hand, in the studied oligoiodide, the charge-assisted iodine–iodine halogen bonds are observed between the strongly asymmetric triiodide and diiodine units; thus, the oligoiodide anion includes at least two diiodine fragments with bond lengths 2.7334(4) and 2.7786(5) Å bound. This key trait has resulted in characteristic spectral and thermal features. Raman spectra do not contain typical triiodide bands but only those that are expectable for bound diiodine at 157 and 179 cm−1. Thermal decomposition has demonstrated release of both diiodine molecules within one decomposition stage without melting.


Halogen bond Asymmetric triiodide anion Dithiazolium salts Raman spectroscopy Thermal analysis 



This work was supported by the Ministry of Education and Science of the Russian Federation, grant 4.1157.2017/PP and the Russian Foundation for Basic Research, grant No. 17-03-00406. O.I.B. and O.A.R. are grateful for the financial support from the Russian Science Foundation, grant No. 15-13-10022. The authors express their gratitude to Sylvia Casassa for the assistance in specifying computations with the use of TOPOND14.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_987_MOESM1_ESM.pdf (537 kb)
ESM 1 (PDF 537 kb)


  1. 1.
    Yu H, Yan L, He Y, Meng H, Huang W (2017) Chem Commun 53:432–435CrossRefGoogle Scholar
  2. 2.
    Yin Z, Wang Q-X, Zeng M-H (2012) J Am Chem Soc 134:4857–4863CrossRefGoogle Scholar
  3. 3.
    Svensson PH, Kloo L (2003) Chem Reviews 103(5):1649–1684CrossRefGoogle Scholar
  4. 4.
    Desiraju GR, Ho PS, Kloo L (2013) Pure Appl Chem 85(8):1711–1713CrossRefGoogle Scholar
  5. 5.
    Blake AJ, Devillanova FA, Gould RO, Li W-S, Lippolis V, Parsons S, Radek C, Schroder M (1998) Chem Soc Rev 27:195–205CrossRefGoogle Scholar
  6. 6.
    Beno BR, Yeung K-S, Bartberger MD, Pennington LD, Meanwell NA (2015) J Med Chem 58(11):4383–4438CrossRefGoogle Scholar
  7. 7.
    Shibaeva RP, Yagubskii EB (2004) Chem Rev 104:5347–5378CrossRefGoogle Scholar
  8. 8.
    Rakitin OA (2011) Russ Chem Rev 80:647–659CrossRefGoogle Scholar
  9. 9.
    Konstantinova LS, Rakitin OA (2008) Russ Chem Rev 77:521–546CrossRefGoogle Scholar
  10. 10.
    Rawson JM, Alberola A, Whalley A (2006) J Mater Chem 16:2560–2575CrossRefGoogle Scholar
  11. 11.
    Barclay TM, Cordes AW, Goddard JD, Mawhinney RC, Oakley RT, Preuss KE, Reed RW (1997) J Am Chem Soc 119:12136–12141CrossRefGoogle Scholar
  12. 12.
    Barclay TM, Cordes AW, Oakley RT, Preuss KE, Reed RW (1998) Chem Commun:1039–1040Google Scholar
  13. 13.
    Barclay TM, Beer L, Cordes AW, Oakley RT, Preuss KE, Reed RW, Taylor NJ (2001) Inorg Chem 40:2709–2714CrossRefGoogle Scholar
  14. 14.
    Wang Y-H, Lu Y-X, Zou J-W, Yu Q-S (2008) Int J Quantum Chem 108:90–99CrossRefGoogle Scholar
  15. 15.
    Shi Q-C, Lu Y-X, Fan J-C, Zou J-W, Wang Y-H (2008) J Mol Struct 853:39–44CrossRefGoogle Scholar
  16. 16.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  17. 17.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8CrossRefGoogle Scholar
  18. 18.
    Groenewald F, Esterhuysen C, Dillen J (2012) Theor Chem Accounts 131:1–12CrossRefGoogle Scholar
  19. 19.
    Bartashevich EV, Matveychuk YV, Troitskaya EA, Tsirelson VG (2014) Computational and Theoretical Chemistry 1037:53–62CrossRefGoogle Scholar
  20. 20.
    Desiraju GR, Parthasarathy R (1989) J Am Chem Soc 111:8725–8726CrossRefGoogle Scholar
  21. 21.
    Bartashevich EV, Shmanina EA, Yushina ID, Tsirelson VG, Kim DG (2014) J Struct Chem 55:154–160CrossRefGoogle Scholar
  22. 22.
    Bartashevich EV, Batalov VI, Yushina ID, Stash AI, Chen YS (2016) Acta Crystallographica Section C 72:341–345Google Scholar
  23. 23.
    Konstantinova LS, Rakitin OA, Rees CW, Sivadasan S, Torroba T (1998) Tetrahedron 54:9639–9650CrossRefGoogle Scholar
  24. 24.
    Sheldrick GM (2008) Acta Cryst A 64:112–122CrossRefGoogle Scholar
  25. 25.
    The Cambridge Crystallographic Data Centre via
  26. 26.
    Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noel Y, Causa M, Rerat M, Kirtman B (2014) Int J Quantum Chem 114:1287–1317CrossRefGoogle Scholar
  27. 27.
    Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789CrossRefGoogle Scholar
  28. 28.
    Becke AD (1988) Phys Rev 38:3098–3100CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Gatti C, Saunders VR, Roetti CJ (1994) J Chem Phys 101:10686–10696CrossRefGoogle Scholar
  31. 31.
    Maschio L, Kirtman B, Rerat M, Orlando R, Dovesi R (2013) J Chem Phys 139:164101CrossRefGoogle Scholar
  32. 32.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  33. 33.
    Gatti C, Casassa S (2016) Topond14. User’s Manual. Google Scholar
  34. 34.
    I. Yusina – S. Casassa personal communication, 2017.Google Scholar
  35. 35.
  36. 36.
    Lu T, Chen F (2012) J Comput Chem 33:580–592CrossRefGoogle Scholar
  37. 37.
    Hübschle CB, Dittrich B (2011) J Appl Crystallogr 44:238–257CrossRefGoogle Scholar
  38. 38.
    Hübschle CB, Luger P (2006) J Appl Crystallogr 39:901–904CrossRefGoogle Scholar
  39. 39.
    Bartashevich EV, Stash AI, Batalov VI, Yushina ID, Drebushchak TN, Boldyreva EV, Tsirelson VG (2016) Struct Chem 27:1553–1560CrossRefGoogle Scholar
  40. 40.
    Aragoni MC, Arca M, Caltagirone C, Castellano C, Demartin F, Garau A, Isaia F, Lippolis V, Montisc R, Pintus A (2012) Cryst Eng Comm 14:5809–5823CrossRefGoogle Scholar
  41. 41.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Cryst B72:171–179Google Scholar
  42. 42.
    Cameron TS, Decken A, Fang M, Parsons S, Passmore J, Wood DJ (1999) Chem Commun:1801–1802Google Scholar
  43. 43.
    Beer L, Cordes AW, Haddon RC, Itkis ME, Oakley RT, Reed RW, Robertson CM (2002) Chem Commun:1872–1873Google Scholar
  44. 44.
    Barclay TM, Beer L, Cordes AW, Oakley RT, Preuss KE, Taylor NJ, Reed RW (1999) Chem Commun:531–532Google Scholar
  45. 45.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York, Google Scholar
  46. 46.
    Abate A, Brischetto M, Cavallo G (2010) Chem Commun 46:2724CrossRefGoogle Scholar
  47. 47.
    Nelyubina YV, Antipin MY, Dunin DS (2010) Chem Commun 46:5325–5327CrossRefGoogle Scholar
  48. 48.
    Megen M, Reiss GJ (2013) Inorganics 1:3–13CrossRefGoogle Scholar
  49. 49.
    Tebbe K-F, Loukili RZ (1998) Anorg Allg Chem 624:1175CrossRefGoogle Scholar
  50. 50.
    Gaballa AS, Teleb SM, Rusanov E, Steinborn D (2004) Inorg Chim Acta 357:4144CrossRefGoogle Scholar
  51. 51.
    Giese M, Albrecht M, Bohnen C, Repenko T, Valkonen A, Rissanen K (2014) Dalton Trans 43:1873CrossRefGoogle Scholar
  52. 52.
    Batalov VI, Kim DG, Dikhtiarenko A, Amghouz Z, Bartashevich EV, Garcia-Granda S (2014) Z Kristallogr New Cryst Struct 229:211–212Google Scholar
  53. 53.
    Bartashevich EV, Yushina ID, Vershinina EA, Slepukhin PA, Kim DG (2014) J Struct Chem 55:112–119CrossRefGoogle Scholar
  54. 54.
    Batsanov AS, Bryce MR, Chesney A, Howard JAK, John DE, Moore AJ, Wood CL, Gershtenman H, Becker JY, Khodorkovsky VY, Ellern A, Bernstein J, Perepichka IF, Rotello V, Gray M, Cuello AO (2001) J Mater Chem 11:2181CrossRefGoogle Scholar
  55. 55.
    Murata T, Morita Y, Yakiyama Y, Fukui K, Yamochi H, Saito G, Nakasuji K (2007) J Am Chem Soc 129:10837CrossRefGoogle Scholar
  56. 56.
    Warden AC, Warren M, Hearn MTW, Spiccia L (2004) New J Chem 28:1160CrossRefGoogle Scholar
  57. 57.
    Bartashevich EV, Yushina ID, Stash AI, Tsirelson VG (2014) Cryst Growth Des 14:5674–5684CrossRefGoogle Scholar
  58. 58.
    Mata I, Molins E, Alkorta I, Espinosa E (2007) J Phys Chem A 111:6425–6433CrossRefGoogle Scholar
  59. 59.
    Shishkina AV, Stash AI, Civalleri B, Ellern A, Tsirelson VG (2010) Mendeleev Commun 20:161–164CrossRefGoogle Scholar
  60. 60.
    Mata I, Alkorta I, Molins E, Espinosa E (2013) Chem Phys Lett 555:106–109CrossRefGoogle Scholar
  61. 61.
    Bader RFW, Beddall P (1972) J Chem Phys 56:3320–3329CrossRefGoogle Scholar
  62. 62.
    Tsirelson VG, Shishkina AV, Stash AI, Parsons S (2009) Acta Crystallogr B65:647–658CrossRefGoogle Scholar
  63. 63.
    Deplano P, Ferraro JR, Mercuri ML, Trogu EF (1999) Coord Chem Rev 188:71–95CrossRefGoogle Scholar
  64. 64.
    Arca M, Aragoni MC, Devillanova FA, Garau A, Isaia F, Lippolis V, Mancini A, Verani G (2006) Bioinorganic Chemistry and Applications Article ID 58937:1–12Google Scholar
  65. 65.
    Yushina I, Rudakov B, Krivtsov I, Bartashevich E (2014) J Therm Anal Calorim 118:425–429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • O.I. Bol’shakov
    • 1
  • I.D. Yushina
    • 1
  • E.V. Bartashevich
    • 1
  • Y.V. Nelyubina
    • 2
  • R.R. Aysin
    • 2
  • O.A. Rakitin
    • 1
    • 3
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Scientific and Technical Center on Raman Spectroscopy, A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations