Structural Chemistry

, Volume 28, Issue 6, pp 1919–1926 | Cite as

A theoretical study on the electronic sensitivity of the pristine and Al-doped B24N24 nanoclusters to F2CO and Cl2CO gases

Original Research
  • 83 Downloads

Abstract

The adsorption behavior and electronic sensitivity of the pristine, and Al-doped B24N24 (Al-BN) nanoclusters toward two carbonyl halides (F2CO, and Cl2CO (phosgene)) were investigated using density functional calculations. It was found that the carbonyl halides interact with the pristine cluster very weakly while by replacing a B atom of the cluster with an Al atom, the adsorption energy is significantly increased. The electronic properties of the pristine BN nanocluster are not sensitive to F2CO but after the Cl2CO adsorption, its HOMO-LUMO gap (E g) is significantly decreased. Despite this decrease, the BN cage is still insulator and cannot be used as a sensor. The Al-doping overcomes this problem by a primarily reduction in the E g (from 6.45 to 4.88 eV). Our calculations indicate that by F2CO and Cl2CO adsorptions, the Al-BN cluster is transformed from insulator to a semiconductor. This phenomenon largely increases the electrical conductivity of Al-BN and can produce electrical noise which is responsible for the gas detection. Also, it is shown that the Al-BN selectively responses to F2CO and Cl2CO gases.

Keywords

Phosgene Nanostructures Sensor DFT F2CO 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the Mazandaran University of Medical Sciences ‘‘Professor’s Projects Funds’’.

References

  1. 1.
    Eckert WG (1991) Mass deaths by gas or chemical poisoning: a historical perspective. The American journal of forensic medicine and pathology 12(2):119–125CrossRefGoogle Scholar
  2. 2.
    Crouzel C, Hinnen F, Maitre E (1995) Radiosynthesis of methyl and heptyl [11 C] Isocyanates from [11 C] phosgene, application to the synthesis of carbamates:[11 C] physostygmine and [11 C] heptylphysostigmine. Appl Radiat Isot 46(3):167–170CrossRefGoogle Scholar
  3. 3.
    Borak J, Diller WF (2001) Phosgene exposure: mechanisms of injury and treatment strategies. J Occup Environ Med 43(2):110–119CrossRefGoogle Scholar
  4. 4.
    Fawcett F, Tullock C, Coffman D (1962) The chemistry of carbonyl fluoride. I. The fluorination of organic compounds. J Am Chem Soc 84(22):4275–4285CrossRefGoogle Scholar
  5. 5.
    Hill HH, Martin SJ (2002) Conventional analytical methods for chemical warfare agents. Pure Appl Chem 74(12):2281–2291CrossRefGoogle Scholar
  6. 6.
    Rinsland C, Zander R, Brown L, Farmer C, Park J, Norton R, Russell J, Raper O (1986) Detection of carbonyl fluoride in the stratosphere. Geophys Res Lett 13(8):769–772CrossRefGoogle Scholar
  7. 7.
    Bogue R (2008) Nanosensors: a review of recent progress. Sens Rev 28(1):12–17CrossRefGoogle Scholar
  8. 8.
    Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct Chem 23(5):1567–1572CrossRefGoogle Scholar
  9. 9.
    Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlal L, Bekhradnia A (2017) The Hartree-Fock exchange effect on the CO adsorption by the boron nitride nanocage. Physica E 87(3):308–311Google Scholar
  10. 10.
    Peyghan AA, Baei MT, Moghimi M, Hashemian S (2012) Adsorption and electronic structure study of imidazole on (6, 0) zigzag single-walled boron nitride nanotube. J Clust Sci 24:31–47Google Scholar
  11. 11.
    Beheshtian J, Peyghan AA, Bagheri Z (2013) Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J Mol Model 19(6):2197–2203CrossRefGoogle Scholar
  12. 12.
    Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2014) Density-functional calculations of HCN adsorption on the pristine and Si-doped graphynes. Struct Chem 25(1):1–7CrossRefGoogle Scholar
  13. 13.
    Peyghan AA, Rastegar SF, Hadipour NL (2014) DFT study of NH3 adsorption on pristine, Ni-and Si-doped graphynes. Phys Lett A 378(30):2184–2190CrossRefGoogle Scholar
  14. 14.
    Yuan L, Hu M, Wei Y, Ma W (2016) Enhanced NO2 sensing characteristics of Au modified porous silicon/thorn-sphere-like tungsten oxide composites. Appl Surf Sci 389:824–834CrossRefGoogle Scholar
  15. 15.
    Golberg D, Bando Y, Tang C, Zhi C (2007) Boron nitride nanotubes. Adv Mater 19(18):2413–2432CrossRefGoogle Scholar
  16. 16.
    Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlali L, Bekhradnia A (2017) A comparative computational study on the BN ring doped nanographenes. Appl Surf Sci 396(2):740–745Google Scholar
  17. 17.
    Nejati K, Hosseinian A, Edjlali L, Vessally E (2017) The effect of structural curvature on the cell voltage of BN nanotube based Na-ion batteries.  J Mol Liq 229(3):167–171Google Scholar
  18. 18.
    Nejati K, Hosseinian A, Bekhradnia A, Vessally E, Edjlal L (2017) Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies. J Mol Graph Model 74(6):1-7Google Scholar
  19. 19.
    Safari L, Vessally E, Bekhradnia A, Hosseinian A, Edjlali L (2017) A DFT study on the sensitivity of two-dimensional BN nanosheet to nerve agents cyclosarin and tabun. Thin Solid Films 623(2):57-163Google Scholar
  20. 20.
    Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8, 0) boron nitride nanotube: a first-principles study. Phys E 76:47–51CrossRefGoogle Scholar
  21. 21.
    Srivastava P, Jaiswal NK, Sharma V (2014) First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules. Superlattice Microst 73:350–358CrossRefGoogle Scholar
  22. 22.
    Boshra A, Jadidi S, Goudarzi M, Niroumand S, Mohammadi M (2012) DFT study of endohedral atoms effect on electrophilicity of B16N16 boron nitride nanocage: comparative analyses. J Clust Sci 23(2):297–310CrossRefGoogle Scholar
  23. 23.
    Srivastava P, Sharma V, Jaiswal NK (2015) Adsorption of COCl2 gas molecule on armchair boron nitride nanoribbons for nanosensor applications. Microelectron Eng 146:62–67CrossRefGoogle Scholar
  24. 24.
    Bai L, Zhou Z (2007) Computational study of B-or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Carbon 45:2105–2110CrossRefGoogle Scholar
  25. 25.
    Hp Z, Luo X, Lin X, Yp Z, Tang Pp LX, Tang Y (2015) Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring. J Mol Graph Model 61:224–230CrossRefGoogle Scholar
  26. 26.
    Wang R, Zhu R, Zhang D (2008) Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett 467:131–135CrossRefGoogle Scholar
  27. 27.
    Beheshtian J, Peyghan AA, Noei M (2013) Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors Actuators B Chem 181:829–834CrossRefGoogle Scholar
  28. 28.
    Ahmadi Peyghan A, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Can aluminum nitride nanotubes detect the toxic NH3 molecules? Phys E 44:1357–1360CrossRefGoogle Scholar
  29. 29.
    Pannopard P, Khongpracha P, Probst M, Limtrakul J (2009) Gas sensing properties of platinum derivatives of single-walled carbon nanotubes: a DFT analysis. J Mol Graph Model 28:62–66CrossRefGoogle Scholar
  30. 30.
    Ahmadi Peyghan A, Hadipour NL, Bagheri Z (2013) Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J Phys Chem C 117:2427–2432CrossRefGoogle Scholar
  31. 31.
    Chen C, Xu K, Ji X, Miao L, Jiang J (2014) Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide. Phys Chem Chem Phys 16:11031–11036CrossRefGoogle Scholar
  32. 32.
    Feng D, Zhang Y, Shi W, Li X, Ma H (2010) A simple and sensitive method for visual detection of phosgene based on the aggregation of gold nanoparticles. Chem Commun 46(48):9203–9205CrossRefGoogle Scholar
  33. 33.
    Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B: Chem 171:846–852CrossRefGoogle Scholar
  34. 34.
    Virji S, Kojima R, Fowler JD, Villanueva JG, Kaner RB, Weiller BH (2009) Polyaniline nanofiber composites with amines: novel materials for phosgene detection. Nano Res 2(2):135–142CrossRefGoogle Scholar
  35. 35.
    Oku T, Nishiwaki A, Narita I, Gonda M (2003) Formation and structure of B24N24 clusters. Chem Phys Lett 380:620–623CrossRefGoogle Scholar
  36. 36.
    Ma Z, Zhang Y, Li F, Chen H (2016) Comparative study of H2 adsorption on B24 N24, Al24N24 and B12Al12N24 clusters. Comput Mater Sci 117:71–75CrossRefGoogle Scholar
  37. 37.
    Koi N, Oku T, Suaki Suganuma K (2005) Effects of endohedral element in B24N24 clusters on hydrogenation studied by molecular orbital calculations. Phys E 29:541–545CrossRefGoogle Scholar
  38. 38.
    Rouzbehani GM, Boshra A, Seif A (2009) B24N24 nanocages: a GIAO density functional theory study of 14N and 11B nuclear magnetic shielding and electric field gradient tensors. Monatshefte für Chemie-Chemical Monthly 140:255–263CrossRefGoogle Scholar
  39. 39.
    Mileev M, Kuzmin S, Parfenyuk V (2006) Ab initio calculations of structure and stability of small boron nitride clusters. J Struct Chem 47:1016–1021CrossRefGoogle Scholar
  40. 40.
    Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts. Chemistry Education Research and Practice 2:91–104CrossRefGoogle Scholar
  41. 41.
    Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange The Journal of chemical physics 98:5648–5652CrossRefGoogle Scholar
  42. 42.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRefGoogle Scholar
  43. 43.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473CrossRefGoogle Scholar
  44. 44.
    Tabtimsai C, Ruangpornvisuti V, Wanno B (2013) Density functional theory investigation of the VIIIB transition metal atoms deposited on (5,5) single-walled carbon nanotubes. Phys E 49:61–671CrossRefGoogle Scholar
  45. 45.
    Mishra AK (2015) DFT study of structural, vibrational and electronic properties of polyaniline pernigraniline model compounds. Journal of Computational Science 10:195–208CrossRefGoogle Scholar
  46. 46.
    Abdulsattar MA (2011) SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: density functional theory study. Superlattice Microst 50(4):377–385CrossRefGoogle Scholar
  47. 47.
    Tomic S, Montanari B, Harrison NM (2008) The group III–V’s semiconductor energy gaps predicted using the B3LYP hybrid functional. Phys E 40:2125–2127CrossRefGoogle Scholar
  48. 48.
    Samadizadeh M, Rastegar SF, Peyghan AA (2015) The electronic response of nano-sized tube of BeO to CO molecule: a density functional study. Struct Chem 26(3):809–814CrossRefGoogle Scholar
  49. 49.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  50. 50.
    O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845CrossRefGoogle Scholar
  51. 51.
    Boys SF, Fd B (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  52. 52.
    Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C 119(11):6398–6404CrossRefGoogle Scholar
  53. 53.
    Grüning M, Marini A, Rubio A (2006) Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators. J Chem Phys 124(15):154108–154115CrossRefGoogle Scholar
  54. 54.
    Strehlow W, Cook E (1973) Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J Phys Chem Ref Data 2(1):163–200CrossRefGoogle Scholar
  55. 55.
    Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34(8):5390–5399CrossRefGoogle Scholar
  56. 56.
    Peyghan AA, Noei M, Yourdkhani S (2013) Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattice Microst 59:115–122CrossRefGoogle Scholar
  57. 57.
    Soltani A, Raz SG, Rezaei VJ, Dehno Khalaji A, Savar M (2012) Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci 263:619–625CrossRefGoogle Scholar
  58. 58.
    Shao P, Kuang X-Y, Ding L-P, Yang J, Zhong M-M (2013) Can CO 2 molecule adsorb effectively on Al-doped boron nitride single walled nanotube? Appl Surf Sci 285:350–356CrossRefGoogle Scholar
  59. 59.
    Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali LA Computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattice Microst. doi: 10.1016/j.spmi.2016.09.040

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Department of Engineering Science, College of EngineeringUniversity of TehranTehranIran
  3. 3.Pharmaceutical Sciences Research Center, Department of Medicinal ChemistryMazandaran University of Medical SciencesSariIran
  4. 4.Department of Chemistry, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations