Structural Chemistry

, Volume 28, Issue 6, pp 1895–1906 | Cite as

Computational studies on the mechanism and selectivity of Al8O12 nanocluster for different elimination reactions

Original Research
  • 111 Downloads

Abstract

Quantum mechanical investigations are performed to show the mechanism and selectivity of Al8O12 nanocluster during different competing elimination reactions of acyclic and cyclic compounds. The studies reveal that, the nanocluster can selectively eliminate hydrogen halide in presence of both hydroxyl and halide as leaving groups. Furthermore, for competing dehydrohalogenations, the chemoselectivity trend is just opposite to the leaving character of the halides, i.e., the fluoride is eliminated first. The regioselectivity of the nanocluster is also remarkable during elimination. Most importantly, the dehydrohalogenations proceed through a so called ’unfavorable’ syn-elimination pathway thereby producing stereospecified products which are difficult to be produced via normal base catalytic condition.

Keywords

Alumina nanocluster Selective elimination Stereospecificity Alkyl halide 

Notes

Acknowledgments

The financial supports from CSIR (F. No. 01(6762)/17) and UGC (F. No. 43-174/2014 (SR)), New Delhi, Govt. of India are gratefully acknowledged. A.P. expresses his sincere gratitude to Dr. N.A. Begum and Dr. A. Hazra, Dept. of Chemistry, Visva-Bharati for sharing their experiences in synthetic Organic Chemistry. A.P. also acknowledges Dr. D.S. Kothari Postdoctoral Fellowship provided by UGC, New Delhi, Govt. of India.

Compliance with Ethical Standards

Conflict of interests

The authors declare no competing financial interest.

Supplementary material

11224_2017_974_MOESM1_ESM.pdf (1.7 mb)
(PDF 1.74 MB)

References

  1. 1.
    Tanabe K (1970) Solid acids and bases. Acad Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Ross JR (2011) Heterogeneous catalysis: fundamentals and applications. ElsevierGoogle Scholar
  3. 3.
    Wefers K, Misra C (1987) Oxides and hydroxides of aluminum. Alcoa Laboratories, PittsburghGoogle Scholar
  4. 4.
    Knözinger H (1968) Dehydration of alcohols on aluminum oxide. Angewandte Chemie Int Edn English 7(10):791–805CrossRefGoogle Scholar
  5. 5.
    Fan D, Dai DJ, Wu HS (2012) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6(1):101–115CrossRefGoogle Scholar
  6. 6.
    Jia W, Wu Q, Lang X, Hu C, Zhao G, Li J, Zhu Z (2015) Influence of lewis acidity on catalytic activity of the porous alumina for dehydrofluorination of 1, 1, 1, 2-tetrafluoroethane to trifluoroethylene. Catal Lett 145(2):654–661CrossRefGoogle Scholar
  7. 7.
    DeWilde JF, Czopinski CJ, Bhan A (2014) Ethanol dehydration dehydrogenation on γ-al2o3 Mechanism of acetaldehyde formation. ACS Catal 4(12):4425–4433CrossRefGoogle Scholar
  8. 8.
    Christiansen MA, Mpourmpakis G, Vlachos DG (2013) Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-al2o3 (100). Acs Catal 3(9):1965–1975CrossRefGoogle Scholar
  9. 9.
    Busca G (1999) The surface acidity of solid oxides and its characterization by ir spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys 1(5):723–736CrossRefGoogle Scholar
  10. 10.
    Blumenfeld A, Fripiat J (1997) Acid sites topology in aluminas and zeolites from high-resolution solid-state nmr. Top Catal 4(1–2):119–129CrossRefGoogle Scholar
  11. 11.
    Wischert R, Copéret C, Delbecq F, Sautet P (2011) Optimal water coverage on alumina: a key to generate lewis acid–base pairs that are reactive towards the c–h bond activation of methane. Angewandte Chemie Int Edn 50(14):3202–3205CrossRefGoogle Scholar
  12. 12.
    Wischert R, Laurent P, Copéret C, Delbecq F, Sautet P (2012) γ-alumina: the essential and unexpected role of water for the structure, stability, and reactivity of ”defect” sites. J Am Chem Soc 134(35):14430–14449CrossRefGoogle Scholar
  13. 13.
    Comas-Vives A, Schwarzwälder M, Copéret C, Sautet P (2015) Carbon–carbon bond formation by activation of ch3f on alumina. J Phys Chem C 119(13):7156–7163CrossRefGoogle Scholar
  14. 14.
    Roy S, Mpourmpakis G, Hong DY, Vlachos DG, Bhan A, Gorte R (2012) Mechanistic study of alcohol dehydration on γ-al2o3. ACS Catal 2(9):1846–1853CrossRefGoogle Scholar
  15. 15.
    Fang Z, Wang Y, Dixon DA (2015) Computational study of ethanol conversion on al8o12 as a model for γ-al2o3. J Phys Chem C 119(41):23413–23421CrossRefGoogle Scholar
  16. 16.
    Wittbrodt J, Hase W, Schlegel H (1998) Ab initio study of the interaction of water with cluster models of the aluminum terminated (0001) α-aluminum oxide surface. J Phys Chem B 102(34):6539–6548CrossRefGoogle Scholar
  17. 17.
    Kostetskyy P, Mpourmpakis G (2015) Structure-activity relationships in the production of olefins from alcohols and ethers: a first-principles theoretical study. Catal Sci Technol 5(9):4547–4555CrossRefGoogle Scholar
  18. 18.
    Casarin M, Maccato C, Vittadini A (2000) Theoretical study of the chemisorption of co on al2o3 (0001). Inorgan Chem 39(23):5232–5237CrossRefGoogle Scholar
  19. 19.
    Bermudez VM (2007) Quantum-chemical study of the adsorption of dmmp and sarin on γ-al2o3. J Phys Chem C 111(9):3719–3728CrossRefGoogle Scholar
  20. 20.
    Biswas S, Pramanik A, Sarkar P (2016) Computational studies on the reactivity of alkyl halides over (al2o3)n nanoclusters: an approach towards room temperature dehydrohalogenation. Nanoscale 8:10205–10218CrossRefGoogle Scholar
  21. 21.
    Liu X (2008) Drifts study of surface of γ-alumina and its dehydroxylation. J Phys Chem C 112(13):5066–5073CrossRefGoogle Scholar
  22. 22.
    Fu Q, Wagner T, Rühle M (2006) Hydroxylated α-al2o3 (0001) surfaces and metal/ α-al2o3 (0001) interfaces. Surf Sci 600(21):4870–4877CrossRefGoogle Scholar
  23. 23.
    Pistarino C, Finocchio E, Romezzano G, Brichese F, Di Felice R, Busca G, Baldi M (2000) A study of the catalytic dehydrochlorination of 2-chloropropane in oxidizing conditions. Indus Eng Chem Res 39(8):2752–2760CrossRefGoogle Scholar
  24. 24.
    Bai S, Dai Q, Chu X, Wang X (2016) Dehydrochlorination of 1,2-dichloroethane over ba-modified al2o3 catalysts. RSC Adv 6(14):5618–5630CrossRefGoogle Scholar
  25. 25.
    Lowry TH, Richardson KS (1981) Mechanism and theory in organic chemistry. Harper & Row, New YorkGoogle Scholar
  26. 26.
    Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure. WileyGoogle Scholar
  27. 27.
    Saunders WH, Cockerill AF (1973) Mechanisms of elimination reactions. Wiley-InterscienceGoogle Scholar
  28. 28.
    Misono M, Yoneda Y (1972) Stereochemistry and isotope effect in the dehydrobromination of 2-bromobutane over solid catalyst. Chem Lett 7:551–552CrossRefGoogle Scholar
  29. 29.
    Misono M (1973) Stereoselectivity of the elimination reactions of alkyl halides over silica gel and alkali-treated silica gel. J Catal 30(2):226–234CrossRefGoogle Scholar
  30. 30.
    Misono M, Aoki Y, Yoneda Y (1976) Stereochemical studies of elimination reactions of 2-bromobutane and 2, 3-dibromobutane over alkali-ion exchanged silica gels. Bull Chem Soc Jpn 49(3):627–633CrossRefGoogle Scholar
  31. 31.
    Misono M, Takizawa T, Yoneda Y (1978) Dehydrobromination of bromoalkanes over cabosil and alkali-ion-exchanged cabosils: I. A stereochemical study. J Catal 52(3):397–405CrossRefGoogle Scholar
  32. 32.
    Lee JG, Bartsch RA (1979) Dehydrohalogenation by complex base. Preferential loss of” poorer” halogen leaving groups. J Am Chem Soc 101(1):228–229CrossRefGoogle Scholar
  33. 33.
    Croft AP, Bartsch RA (1983) Complex-base-promoted syn eliminations from trans-1-bromo-2-chlorocyclohexane. J Org Chem 48(6):876–879CrossRefGoogle Scholar
  34. 34.
    Croft AP, Bartsch RA (1994) Comparison of β-chloro-activated, syn and anti dehydrochlorinations induced by complex base. J Org Chem 59(7):1930–1932CrossRefGoogle Scholar
  35. 35.
    Blanc EJ, Pines H (1968) Alumina: catalyst and support. xxxvii. Mechanism of dehydration of cis-and trans-2-alkyl-, 2-phenyl-and 3-tert-butylcyclohexanols over alumina catalysts. J Org Chem 33(5):2035–2043CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision C.01, gaussian Inc. Wallingford CTGoogle Scholar
  37. 37.
    Zhao Y, Truhlar DG (2008) The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor Chem Acc 120(1-3):215–241CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Truhlar DG (2008) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 4(11):1849–1868CrossRefGoogle Scholar
  40. 40.
    Sengupta T, Das S, Pal S (2015) Oxidative addition of the c–i bond on aluminum nanoclusters. Nanoscale 7(28):12109–12125CrossRefGoogle Scholar
  41. 41.
    Ahubelem N, Altarawneh M, Dlugogorski BZ (2014) Dehydrohalogenation of ethyl halides. Tetrahedron Lett 55(35):4860–4868CrossRefGoogle Scholar
  42. 42.
    Rosenbach N, Mota CJ (2005) A dft study of sn2 and e2 reactions of butylhalides on zeolite y: The effect of the leaving group. J Mol Struct Theochem 731(1):157–161CrossRefGoogle Scholar
  43. 43.
    McQuarrie DA (2000) Statistical Mechanics. University Science Books, SausalitoGoogle Scholar
  44. 44.
    Boys SF, Bernardi Fd (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566CrossRefGoogle Scholar
  45. 45.
    Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894CrossRefGoogle Scholar
  46. 46.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107–115CrossRefGoogle Scholar
  47. 47.
    Canneaux S, Bohr F, Henon E (2014) Kisthelp: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35(1):82–93CrossRefGoogle Scholar
  48. 48.
    Foster J, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218CrossRefGoogle Scholar
  49. 49.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  50. 50.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  51. 51.
    Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem So 108(19):5708–5711CrossRefGoogle Scholar
  52. 52.
    Mendez F, Gazquez JL (1994) Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116(20):9298–9301CrossRefGoogle Scholar
  53. 53.
    House HO, Ro RS (1958) The stereochemistry of elimination reactions involving halohydrin derivatives and metals1. J Am Chem Soc 80(1):182–187CrossRefGoogle Scholar
  54. 54.
    Cho S, Kang S, Keum G, Kang SB, Han SY, Kim Y (2003) Indium-mediated reductive elimination of halohydrins. J Org Chem 68(1):180–182CrossRefGoogle Scholar
  55. 55.
    Bartlett PD (1935) Cis-and trans-chlorohydrins of cyclohexene1. J Am Chem Soc 57(1):224–227CrossRefGoogle Scholar
  56. 56.
    Posner GH, Gurria GM (1976) Organic reactions at alumina surfaces. Elimination reactions effected by dehydrated chromatographic alumina. J Org Chem 41(3):578–580CrossRefGoogle Scholar
  57. 57.
    Hudlicky M (1986) Dehydrohalogenations of cis-and trans-1-bromo-2-flourocyclohexanes. J Fluor Chem 32(4):441–452CrossRefGoogle Scholar
  58. 58.
    Bunnett J (1962) The mechanism of bimolecular β-elimination reactions. Angewandte Chemie Int Edn English 1(5):225–235CrossRefGoogle Scholar
  59. 59.
    Kobayashi T, Ohmiya H, Yorimitsu H, Oshima K (2008) Cobalt-catalyzed regioselective dehydrohalogenation of alkyl halides with dimethylphenylsilylmethylmagnesium chloride. J Am Chem Soc 130(34):11276–11277CrossRefGoogle Scholar
  60. 60.
    Bartsch RA, Zavada J (1980) Stereochemical and base species dichotomies in olefin-forming e2 eliminations. Chem Rev 80(6):453–494CrossRefGoogle Scholar
  61. 61.
    Stirling CJ (1979) Leaving groups and nucleofugality in elimination and other organic reactions. Acc Chem Res 12(6):198–203CrossRefGoogle Scholar
  62. 62.
    Yamawaki J, Kawate T, Ando T, Hanafusa T (1983) Potassium fluoride on alumina. An efficient solid base for elimination, addition, and condensation. Bull Chem Soc Jpn 56(6):1885–1886CrossRefGoogle Scholar
  63. 63.
    Kopka IE, Nowak MA, Rathke MW (1986) Dehydrohalogenation reactions using hindered lithium dialkylamide bases. Synth Commun 16(1):27–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of ChemistryVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations