Structural Chemistry

, Volume 28, Issue 6, pp 1887–1893 | Cite as

Mn@B3N3Si8 +: a stable singlet manganese-doped hetero-atom-mixed silicon fullerene

  • Hung Tan Pham
  • Huyen Thi Nguyen
  • Minh Tho Nguyen
Original Research


A B3N3Si8 cage is formed upon substitution of Si sites of rhombus faces of the pure Si14 cluster by B and N atoms. Doping by the ion Mn+ leads to the hetero-silicon fullerene B3N3Si8Mn+ which comprises three rhombi (BNBN, Si3B and Si3N) and four pentagons (two Si2B2N and two Si2BN2). Hetero-atoms form polarized Si-N and Si-B bonds as indicated by electron localization function (ELF) maps and NBO charges. The Mn center connects the B3N3Si8 cage by ionic interactions. Valence electrons of B3N3Si8Mn+ occupy a shell configuration of [1S2 1P6 1D10 1F14 1G12 2S2 2P6 2D10] and induce a certain thermodynamic stability. The high spin of the Mn+ metal cation is completely quenched within the hetero-Si fullerene.


Silicon clusters Silicon fullerene Hetero-fullerene Manganese-doped silicon clusters Jellium model 



We are grateful to the Ton Duc Thang University (TDTU-Demasted). MTN is indebted to the KU Leuven Research Council for continuing support (GOA program).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910CrossRefGoogle Scholar
  2. 2.
    Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science 321(5889):674–676CrossRefGoogle Scholar
  3. 3.
    Scharfe S, Kraus F, Stegmaier S, Schier A, Fassler TF (2011) Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew Chem Int Ed 50(16):3630–3670CrossRefGoogle Scholar
  4. 4.
    Honea EC, Ogura A, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1993) Raman spectra of size-selected silicon clusters and comparison with calculated structures. Nature 366:42–44CrossRefGoogle Scholar
  5. 5.
    Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRefGoogle Scholar
  6. 6.
    Benedict LX, Puzder A, Williamson AJ, Grossman JC, Galli G, Klepeis JE, Raty JY, Pankratov O (2003) Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe Salpeter equation versus time-dependent local-density approximation. Phys Rev B 68:085310CrossRefGoogle Scholar
  7. 7.
    Ho KM, Shvartsburg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye JL, Jarrold MF (1998) Structures of medium-sized silicon clusters. Nature 392:582–585CrossRefGoogle Scholar
  8. 8.
    Pacchioni G, Koutecký J (1986) Silicon and germanium clusters. A theoretical study of their electronic structures and properties. J Chem Phys 84:3301CrossRefGoogle Scholar
  9. 9.
    Veldeman N, Gruene P, Fielicke A, Claes P, Ngan VT, Nguyen MT, Lievens P (2010) Handbook of nanophysics. In: Sattler KD (ed) Clusters and fullerenes. CRC, Boca Raton Chapter 5 Google Scholar
  10. 10.
    Cheshnovsky O, Yang SH, Pettiette CL, Craycraft MJ, Liu Y, Smalley RE (1987) Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem Phys Lett 138(2):119–124CrossRefGoogle Scholar
  11. 11.
    Winstead CB, Paukstis SJ, Gole JL (1995) What is the ionization potential of silicon dimer? Chem Phys Lett 237(1):81–85CrossRefGoogle Scholar
  12. 12.
    Röthlisberger U, Andreoni W, Parrinello M (1994) Structure of nanoscale silicon clusters. Phys Rev Lett 72:665CrossRefGoogle Scholar
  13. 13.
    Tam NM, Pham HT, Nguyen MT (2014) Ring currents in silicon tetramer (Si4, Si4 2+) and planar tetracoordinate carbon doped cluster Si4C2+: σ versus π aromaticity. Chem Phys Lett 608:255–263CrossRefGoogle Scholar
  14. 14.
    Li S, Van Zee RJ, Weltner W, Raghvachari K Si3-Si7. Experimental and theoretical infrared spectra. Chem Phys Lett 243(3):275–280Google Scholar
  15. 15.
    Shvartsburg AA, Liu B, Jarrold MF, Ho KM (2000) Modeling ionic mobilities by scattering on electronic density isosurfaces: application to silicon cluster anions. J Chem Phys 112:4517CrossRefGoogle Scholar
  16. 16.
    Zhu X, Zeng XC (2003) Structures and stabilities of small silicon clusters: ab initio molecular-orbital calculations of Si7–Si11. J Chem Phys 118:3558CrossRefGoogle Scholar
  17. 17.
    Hellmann W, Hennig RG, Goedecker S, Umrigar CJ, Delley B, Lenosky T (2007) Questioning the existence of a unique ground-state structure for Si clusters. Phys Rev B 75:085411CrossRefGoogle Scholar
  18. 18.
    Beck SM (1989) Mixed metal–silicon clusters formed by chemical reaction in a supersonic molecular beam: implications for reactions at the metal/silicon interface. J Chem Phys 90:6306CrossRefGoogle Scholar
  19. 19.
    Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86:1733CrossRefGoogle Scholar
  20. 20.
    Li Y, Tam NM, Claes P, Woodham AP, Lyon JT, Ngan VT, Nguyen MT, Lievens P, Fielicke A, Janssens E (2014) Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, SinCo (n = 10–12). J Phys Chem A 118(37):8198–8203CrossRefGoogle Scholar
  21. 21.
    Kumar V, Kawazoe Y (2001) Metal-encapsulated fullerene-like and cubic caged clusters of silicon. Phys Rev Lett 87:045503CrossRefGoogle Scholar
  22. 22.
    Kumar V, Kawazoe Y (2002) Magic behavior of Si15M and Si16M (M=Cr, Mo, and W) clusters. Phys Rev B 65:073404CrossRefGoogle Scholar
  23. 23.
    Pham HT, Majumdar D, Lesczynski J, Nguyen MT (2016) 4d and 5d bimetal doped tubular silicon clusters Si12M2 with M = Nb, Ta, Mo and W: a bimetallic configuration model. Phys Chem Chem Phys 19:3115–3124CrossRefGoogle Scholar
  24. 24.
    Huang X, Xu HG, Lu S, Su Y, King RB, Zhao J, Zheng W (2014) Discovery of a silicon-based ferrimagnetic wheel structure in VxSi12 (x = 1–3) clusters: photoelectron spectroscopy and density functional theory investigation. Nano 6:14617–14621Google Scholar
  25. 25.
    Pham HT, Phan TT, Tam NM, Duong LV, Pham-Ho MP, Nguyen MT (2015) Mn2@Si15: the smallest triple ring tubular silicon cluster. Phys Chem Chem Phys 17:17566–17570CrossRefGoogle Scholar
  26. 26.
    Ji W, Luo C (2012) Structures, magnetic properties, and electronic counting rule of metals-encapsulated cage-like M2Si18 (M = Ti-Zn) clusters. Int J Quantum Chem 115(12):2525–2531CrossRefGoogle Scholar
  27. 27.
    Iwasa T, Nakajima A (2012) Geometric, electronic, and optical properties of a superatomic heterodimer and trimer: Sc@Si16–V@Si16 and Sc@Si16–Ti@Si16–V@Si16. J Phys Chem C 116(26):14071–14077CrossRefGoogle Scholar
  28. 28.
    Singh AK, Kumar V, Briere TM, Kawazoe Y (2002) Cluster assembled metal encapsulated thin nanotubes of silicon. Nano Lett 2(11):1243–1248CrossRefGoogle Scholar
  29. 29.
    Palagin D, Reuter K (2013) MSi20H20 aggregates: from simple building blocks to highly magnetic functionalized materials. ACS Nano 7(2):1763–1768CrossRefGoogle Scholar
  30. 30.
    Liu Z, Wang X, Cai J, Zhu H (2015) Room-temperature ordered spin structures in cluster-assembled single V@Si12 sheets. J Phys Chem C 119(3):1517–1523CrossRefGoogle Scholar
  31. 31.
    Nakaya M, Iwasa T, Tsunoyama H, Eguchi T, Nakajima A (2015) Heterodimerization via the covalent bonding of Ta@Si16 nanoclusters and C60 molecules. J Phys Chem C 119(20):10962–10968CrossRefGoogle Scholar
  32. 32.
    Ngan VT, Pierloot K, Nguyen MT (2013) Mn@Si14 +: a singlet fullerene-like endohedrally doped silicon cluster. Phys Chem Chem Phys 15:5493–5498CrossRefGoogle Scholar
  33. 33.
    Tai TB, Nguyen MT (2011) A stochastic search for the structures of small germanium clusters and their anions: enhanced stability by spherical aromaticity of the Ge10 and Ge12 2− systems. J Chem Theory Comput 7(4):1119–1130CrossRefGoogle Scholar
  34. 34.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822CrossRefGoogle Scholar
  35. 35.
    Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72:650CrossRefGoogle Scholar
  36. 36.
    Hay PJ (1977) Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J Chem Phys 66:4377CrossRefGoogle Scholar
  37. 37.
    Peterson KA, Figgen D, Dolg M, Stoll H (2007) Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd. J Chem Phys 126:124101CrossRefGoogle Scholar
  38. 38.
    Figgen D, Peterson KA, Dolg M, Stoll H (2009) Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. J Chem Phys 130:164108CrossRefGoogle Scholar
  39. 39.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J, Gaussian 09 Revision: B.01, Gaussian Inc., Wallingford, CT, USA 2009Google Scholar
  40. 40.
    Kohout M, Wanger FR, Grin Y (2006) Atomic shells from the electron localizability in momentum space. Int J Quantum Chem 106(7):1499–1507CrossRefGoogle Scholar
  41. 41.
    Qin W, Lu W C, Zhao L Z, Zang Q J, Wang C Z, Ho K M (2009) Stabilities and fragmentation energies of Sin clusters (n = 2–33). J Phys: Condens Matter 21 (45) 455501Google Scholar
  42. 42.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686CrossRefGoogle Scholar
  43. 43.
    Savin A, Nesper R, Wengert S, Fӓssler TF (1997) ELF: the electron localization function. Angew Chem Int Ed 36(17):1808–1832CrossRefGoogle Scholar
  44. 44.
    Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron. Delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105(10):3911–3947CrossRefGoogle Scholar
  45. 45.
    Mayer I (2007) Bond order and valence indices: a personal account. J Comput Chem 15(1):204–221CrossRefGoogle Scholar
  46. 46.
    Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 65:67CrossRefGoogle Scholar
  47. 47.
    Goicoechea JM, McGrady JE (2015) On the structural landscape in endohedral silicon and germanium clusters, M@Si12 and M@Ge12. Dalton Trans 44:6755–6766CrossRefGoogle Scholar
  48. 48.
    King RB, Dumitrescu IS, Uta MM (2009) The unique palladium-centered pentagonal antiprismatic cationic bismuth cluster: a comparison of related metal-centered 10-vertex pnictogen cluster structures by density functional theory. Inorg Chem 48(17):8508–8514CrossRefGoogle Scholar
  49. 49.
    Zhou B, Kramer T, Thompson AL, McGrady JE, Goicoechea JM (2011) A highly distorted open-shell endohedral Zintl cluster: [Mn@Pb12]3−. Inorg Chem 50(17):8028–8037CrossRefGoogle Scholar
  50. 50.
    Esenturk EN, Fettinger J, Eichhorn B (2006) The Pb12 2− and Pb10 2− Zintl ions and the M@Pb12 2− and M@Pb10 2− cluster series where M = Ni, Pd, Pt. J Am Chem Soc 128(28):9178–9186CrossRefGoogle Scholar
  51. 51.
    Uta MM, Cioloboc D, King RB (2012) Iron-centered ten-vertex germanium clusters: the ubiquity of low energy pentagonal prismatic structures with various skeletal electron counts. J Phys Chem A 116(36):9197–9204CrossRefGoogle Scholar
  52. 52.
    Tai TB, Nguyen HMT, Nguyen MT (2011) The group 14 cationic clusters by encapsulation of coinage metals X10M+, with X = Ge, Sn, Pb and M = Cu, Ag, Au: enhanced stability of 40 valence electron systems. Chem Phys Lett 502(4):187–193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hung Tan Pham
    • 1
    • 2
  • Huyen Thi Nguyen
    • 1
    • 2
  • Minh Tho Nguyen
    • 1
    • 2
    • 3
  1. 1.Computational Chemistry Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of ChemistryKU LeuvenLeuvenBelgium

Personalised recommendations