Skip to main content
Log in

Structural characteristics of cyclopentane-modified peptide nucleic acids from molecular dynamics simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A PNA molecule is a DNA strand where the sugar-phosphate backbone has been replaced by a structurally homomorphous pseudopeptide chain consisting of N (2-amino-ethyl)-glycine units. PNA binds strongly to both DNA and RNA. However, an analysis of the X-ray and NMR data show that the dihedral angles of PNA/DNA or PNA/RNA complexes are very different from those of DNA:DNA or RNA:RNA complexes. In addition, the PNA strand is very flexible. One way to improve the binding affinity of PNA for DNA/RNA is to design a more pre-organized PNA structure. An effective way to rigidify the PNA strand is to introduce ring structures into the backbone. In several experimental studies, the ethylenediamine portion of aminoethyl glycine peptide nucleic acids (aegPNA) has been replaced with one or more (S,S)-trans cyclopentyl (cpPNA) units. This substitution has met with varied success in terms of DNA/RNA recognition. In the present work, molecular modeling studies were performed to a PNA molecule. Detailed investigations on the conformational and dynamical properties of single-stranded aegPNA and cpPNA were undertaken to determine how the cyclopentane ring will improve binding and to determine the contributions of both entropy and dihedral angle preference to the observed stronger binding. The effects of single and multiple modifications of the PNA backbone were also analyzed to understand changes in conformational and dynamical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nielsen PE (2010) Chem Biodivers 7:786–804

    Article  CAS  Google Scholar 

  2. Corradini R, Sforza S, Tedeschi T, et al (2007) Curr Top Med Chem 7:681–694

    Article  CAS  Google Scholar 

  3. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Science 254:1497–1500

    Article  CAS  Google Scholar 

  4. Maekawa K, Azuma M, Okuno Y, et al (2015) Bioorganic Med Chem 23:7234–7239

    Article  CAS  Google Scholar 

  5. Bertucci A, Prasetyanto EA, Septiadi D, et al (2015) Small 11:5687–5695

    Article  CAS  Google Scholar 

  6. Cai B, Huang L, Zhang H, et al (2015) Biosens Bioelectron 74:329–334

    Article  CAS  Google Scholar 

  7. Belotserkovskii BP, Hanawalt PC (2015) Mol Carcinog 54:1508–1512

    Article  CAS  Google Scholar 

  8. Egholm M, Buchardt O, Christensen L, et al (1993) Nature 365:566–568

    Article  CAS  Google Scholar 

  9. Weiler J, Gausepohl H, Hauser N, et al (1997) Nucleic Acids Res 25:2792–2799

    Article  CAS  Google Scholar 

  10. Dezhenkov AV, Tankevich MV, Nikolskaya ED, et al (2015) Mendeleev Commun 25:47–48

    Article  CAS  Google Scholar 

  11. Pokharel D, Fueangfung S, Zhang M, Fang S (2014) In: Biopolym. - Pept. Sci. Sect. pp 487–493

  12. Igloi GL (1998) Proc Natl Acad Sci U S A 95:8562–8567

    Article  CAS  Google Scholar 

  13. Brown SC, Thomson SA, Veal JM, Davis DG (1994) Science 265:777–780

    Article  CAS  Google Scholar 

  14. Eriksson M, Nielsen PE (1996) Nat Struct Biol 3:410–413

    Article  CAS  Google Scholar 

  15. Betts L, Josey JA, Veal JM, Jordan SR (1995) Science 270:1838–1841

    Article  CAS  Google Scholar 

  16. Sen S, Nilsson L (2001) J Am Chem Soc 123:7414–7422

    Article  CAS  Google Scholar 

  17. Soliva R, Sherer E, Luque FJ, et al (2000) J Am Chem Soc 122:5997–6008

    Article  CAS  Google Scholar 

  18. Autiero I, Saviano M, Langella E (2014) Phys Chem Chem Phys 16:1868–1874

    Article  CAS  Google Scholar 

  19. Autiero I, Saviano M, Langella E (2015) Eur J Med Chem 91:109–117

    Article  CAS  Google Scholar 

  20. Kumar VA, Ganesh KN (2005) Acc Chem Res 38:404–412

    Article  CAS  Google Scholar 

  21. Govindaraju T, Kumar VA, Ganesh KN (2004) J Org Chem 69:5725–5734

    Article  CAS  Google Scholar 

  22. Pokorski JK, Witschi MA, Purnell BL, Appella DH (2004) J Am Chem Soc 126:15067–15073

    Article  CAS  Google Scholar 

  23. Myers MC, Witschi MA, Larionova NV, et al (2003) Org Lett 5:2695–2698

    Article  CAS  Google Scholar 

  24. Govindaraju T, Kumar VA, Ganesh KN (2004) J Org Chem 69:1858–1865

    Article  CAS  Google Scholar 

  25. Sharma S, Sonavane UB, Joshi RR (2009) Int J Quantum Chem 109:890–896

    Article  CAS  Google Scholar 

  26. Pokorski JK, Nam J-M, Vega RA, et al (2005) Chem Commun 2005:2101–2103

    Article  Google Scholar 

  27. Pokorski JK, Myers MC, Appella DH (2005) Tetrahedron Lett 46:915–917

    Article  CAS  Google Scholar 

  28. Englund EA, Appella DH (2005) Org Lett 7:3465–3467

    Article  CAS  Google Scholar 

  29. B P. Gangamani, V A. Kumar, K N. Ganesh (1997) Chem Commun 1913.

  30. Govindaraju T, Kumar V (2005) Chem Commun (Camb) 495–497.

  31. Govindaraju T, Kumar VA (2006) Tetrahedron 62:2321–2330

    Article  CAS  Google Scholar 

  32. Kumar VA (2002) European J Org Chem 2002:2021–2032

    Article  Google Scholar 

  33. Gangamani BP, Kumar VA, Ganesh KN (1996) Tetrahedron 52:15017–15030

    Article  Google Scholar 

  34. D’Costa M, Kumar VA, Ganesh KN (1999) Org Lett 1:1513–1516

    Article  Google Scholar 

  35. D’Costa M, Kumar V, Ganesh KN (2001) Org Lett 3:1281–1284

    Article  Google Scholar 

  36. Kumar V, Pallan PS, Meena, Ganesh KN (2001) Org Lett 3:1269–1272

    Article  CAS  Google Scholar 

  37. Lonkar PS, Kumar VA (2004) Bioorganic Med Chem Lett 14:2147–2149

    Article  CAS  Google Scholar 

  38. Govindaraju T, Kumar VA, Ganesh KN (2004) Chem Commun 1:860–861

    Article  Google Scholar 

  39. Feriotto G, Corradini R, Sforza S, et al (2001) Lab Investig 81:1415–1427

    Article  CAS  Google Scholar 

  40. Corradini R, Feriotto G, Sforza S, et al (2004) J Mol Recognit 17:76–84

    Article  CAS  Google Scholar 

  41. Wittung P, Nielsen PE, Buchardt O, et al (1994) Nature 368:561–563

    Article  CAS  Google Scholar 

  42. Wittung P, Eriksson M, Lyng R, et al (1995) J Am Chem Soc 117:10167–10173

    Article  CAS  Google Scholar 

  43. Jain V, Green M, Faccini A, et al (2006) Polym Prepr 26–27.

  44. Brooks BR, Iii CLB, Mackerell AD, et al (2009) J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  45. Manukyan AK (2015) Theor Chem Accounts:134

  46. Jorgensen WL, Chandrasekhar J, Madura JD, et al (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  47. Rasmussen H, Kastrup JS, Nielsen JN, et al (1997) Nat Struct Biol 4:98–101

    Article  CAS  Google Scholar 

  48. Menchise V, De Simone G, Tedeschi T, et al (2003) Proc Natl Acad Sci U S A 100:12021–12026

    Article  CAS  Google Scholar 

  49. Perbandt M, Vallazza M, Lippmann C, et al (2001) Acta Crystallogr Sect D Biol Crystallogr 57:219–224

    Article  CAS  Google Scholar 

  50. Leporc S, Mauffret O, Tevanian G, et al (1999) Nucleic Acids Res 27:4759–4767

    Article  CAS  Google Scholar 

  51. Berman H (1997) Biopolymers 44:23

    Article  CAS  Google Scholar 

  52. Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J (2000) J Mol Struct 526:329–341

    Article  CAS  Google Scholar 

  53. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2008) J Chem Phys 112:1240–1250

    Article  CAS  Google Scholar 

  54. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM, Frank-Kamenteskii M (2012) J Biomol Struct Dyn 29(1):51–65

    Article  Google Scholar 

  55. Brovarets’ OO, Yurenko YP, Hovorun DM (2015) J Biomol Struct Dyn 33(8):1624–1652

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by PSC-CUNY research grant (award cycle 47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna K. Manukyan.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 203 kb)

ESM 2

(DOCX 8762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manukyan, A.K. Structural characteristics of cyclopentane-modified peptide nucleic acids from molecular dynamics simulations. Struct Chem 28, 1853–1885 (2017). https://doi.org/10.1007/s11224-017-0970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0970-7

Keywords

Navigation