Structural Chemistry

, Volume 28, Issue 6, pp 1607–1622 | Cite as

Charge density studies of an inorganic-organic hybrid p-phenylenediammonium tetrachlorocuprate

Original Research

Abstract

High quality single crystals of an inorganic-organic hybrid, p-phenylenediammonium tetrachlorocuprate (pPDA:CuCl 4 ), suitable for high-resolution X-ray data collection, have been crystallized. pPDA:CuCl 4 crystallizes at special positions in the P21/c space group of the monoclinic crystal system with only halves of the moieties in the asymmetric part of the unit cell. This compound forms a hybrid structure consisting of separate inorganic anion and organic cation layers linked by weak N-H∙∙∙Cl hydrogen bonds. The Cu atoms are located at the centers of symmetry and each of them is surrounded by six chlorine atoms thus forming a tetragonal bipyramid. Two pairs of the chlorine atoms form short Cu-Cl bonds (2.27964(4) and 2.29765(4) Å), whereas the third pair forms the longest Cu-Cl bond (2.90452(4) Å). Experimental and theoretical electron density distributions have been established. There is an excellent agreement between theoretical and experimental properties at bond critical points. The total charge of the organic cation is equal to +1.64 \( \overset{-}{\boldsymbol{e}} \) and is neutralized by the charge of the inorganic anion. The orbital population analysis of the copper 3d electrons and analysis of geometry of the tetrachlorocuprate have been performed and they clearly show presence of the Jahn-Teller effect. Comparison of some experimentally derived parameters such as area and linear density distribution with those calculated on the base of relations derived from literature shows that a longer series of experimental charge density investigations of the hybrid structures should be measured. It should allow for obtaining more reliable relations among different parameters for the hybrid structures with a strong predictive power of such relations. Analysis of residuals of measured intensities of reflections and those resulting from the refined model shows a serious underestimation of esds of measured reflections used in the refinement.

Keywords

Experimental electron density Theoretical electron density Topological analysis Hybrid compound 

Notes

Acknowledgements

The authors acknowledge a financial support from the Polish National Science Centre (NCN) grant N N204 135138. The study was carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by European Union from the European Regional Development Fund under the Operational Program Innovative Economy 2007–2013. Authors are also grateful for the CPU time in the Wrocław Center of Networking and Supercomputing (http://www.wcss.pl), where theoretical calculations were carried out, Grant No. 115.

Compliance with ethical standards

Ethical statement

All ethical guidelines have been adhered.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_969_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1129 kb)

References

  1. 1.
    Zhang W, Xiong RG (2012) Ferroelectric metal-organic frameworks. Chem Rev 112:1163–1195CrossRefGoogle Scholar
  2. 2.
    Guloy AM, Tang Z, Miranda PB, Srdanov VI (2001) A new luminescent organic-inorganic hybrid compound with large optical nonlinearity. Adv Mater 13:833–837CrossRefGoogle Scholar
  3. 3.
    Zhao HR, Li DP, Ren XM, Song Y, Jin WQ (2010) Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3]∞ chains directed organic cations aggregation to kagome-shaped tubular architecture. J Am Chem Soc 132:18–19CrossRefGoogle Scholar
  4. 4.
    Devic T, Evain M, Moelo Y, Canadell E, Auban-Senzier P, Fourmigue M, Batail P (2003) Single crystalline commensurate metallic assemblages of pi-slabs and CdI2-type layers: synthesis and properties of beta-(EDT-TTF-I2)2[Pb5/61/6I2]3 and beta-(EDT-TTF-I2)2[Pb2/3+xAg1/3-2xxI2]3, x=0.05. J Am Chem Soc 125:3295–3301CrossRefGoogle Scholar
  5. 5.
    Hattori T, Taira T, Era M, Tsutsui T, Saito S (1996) Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem Phys Lett 254:103–108CrossRefGoogle Scholar
  6. 6.
    Lemmerer A, Billing DG (2012) Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n=7, 8, 9 and 10. Dalton Trans 41:1146–1157CrossRefGoogle Scholar
  7. 7.
    Wang MS, Xu G, Zhang ZJ, Guo GC (2010) Inorganic-organic hybrid photochromic materials. Chem Commun 46:361–376CrossRefGoogle Scholar
  8. 8.
    Gao H, Yuan GJ, Lu YN, Zhao SP, Ren XM (2013) Inorganic-organic hybrid compound with face-sharing iodoplumbate chains showing novel dielectric relaxation. Inorg Chemm Comm 32:18–21CrossRefGoogle Scholar
  9. 9.
    Bringley JF, Rajeswaran M, Olson LP, Liebert NM (2005) Silver-halide/organic-composite structures: toward materials with multiple photographic functionalities. J Solid State Chem 178:3074–3089CrossRefGoogle Scholar
  10. 10.
    Meng X, Wang HN, Yang GS, Wang S, Wang XL, Shao KZ, Su ZM (2011) Mn-III-Salen composite materials based on Keggin heteropolyanions exhibiting photocatalytic and electrocatalytic activities. Inorg Chem Comm 14:1418–1421CrossRefGoogle Scholar
  11. 11.
    Li S, Liu S, Liu S, Liu Y, Tang Q, Shi Z, Ouyang S, Ye J (2012) {Ta-12} /{Ta-16} cluster-containing polytantalotungstates with remarkable photocatalytic H2 evolution activity. J Am Chem Soc 134:19716–19721CrossRefGoogle Scholar
  12. 12.
    Zhao C, Huang Z, Rodriguez-Cordoba W, Kambara CS, O’Halloran KP, Hardcastle KI, Musaev DG, Lian T, Hill CL (2011) Synthesis and characterization of a metal-to-polyoxometalate charge transfer molecular chromophore. J Am Chem Soc 133:20134–20137CrossRefGoogle Scholar
  13. 13.
    Dolbeck A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048CrossRefGoogle Scholar
  14. 14.
    Long DL, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36:105–121CrossRefGoogle Scholar
  15. 15.
    Jin L, Fang Y, Hu P, Zhai Y, Wang E, Dong S (2012) Polyoxometalate-based inorganic-organic hybrid film structure with reversible electroswitchable fluorescence property. Chem Commun 48:2101–2103CrossRefGoogle Scholar
  16. 16.
    Liu Z, Zu Y, Fu Y, Guo S, Zhang Y, Liang H (2008) Synthesis of hybrid nanostructures composed of copper ions and poly(p-phenylenediamine) in aqueous solutions. J Nanopart Res 10:1271–1278CrossRefGoogle Scholar
  17. 17.
    Guo F, Zhang M, Lu N, Guan H, Tong J, Wang B (2011) Co-crystal of [CuCl4]2− and L1 and its inclusion compounds with three different guests (L1=N,N,N',N'-tetra-p-methoxybenzyl-ethylenediamine). CrystEngComm 13:6753–6758CrossRefGoogle Scholar
  18. 18.
    Cruz Enriquez A, Figueroa Perez MG, Almaral Sanchez JL, Höpfl H, Parra-Hake M, Campos-Gaxiola JJ (2012) Supramolecular networks in organic-inorganic hybrid materials from perchlorometalate(II) salts and 2,4,5-tri(4-pyridyl)imidazole. CrystEngComm 14:6146–6151CrossRefGoogle Scholar
  19. 19.
    Zolfaghari P, de Wijs GA, de Groot RA (2013) The electronic structure of organic-inorganic hybrid compounds: (NH4)2CuCl4, (CH3NH3)2CuCl4 and (C2H5NH3)2CuCl4. J Phys Condens Matter 25:295502CrossRefGoogle Scholar
  20. 20.
    Rao CNR, Cheetham AK, Thirumurugan A (2008) Hybrid inorganic-organic materials: a new family in condensed matter physics. J Phys Condens Matter 20:083202CrossRefGoogle Scholar
  21. 21.
    Mitzi DB (2001) Templating and structural engineering in organic-inorganic perovskites. J Chem Soc Dalton Trans 1:1–12CrossRefGoogle Scholar
  22. 22.
    Estes WE, Losee DB, Hatfield WE (1980) Magnetic-properties of several quasi two-dimensional Heisenberg layer compounds—new class of ferromagnetic insulators involving halocuprates. J Chem Phys 72:630–638CrossRefGoogle Scholar
  23. 23.
    de Jongh LJ (1978) Experiments on simple magnetic model systems. J Appl Phys 49:1305–1310CrossRefGoogle Scholar
  24. 24.
    Jahn IR, Knorr K, Ihringer J (1989) The Jahn-Teller effect and orientational order in (CnH2n+1NH3)2CUCL4, n=1, 2, 3. J Phys Condens Matter 1:6005–6017CrossRefGoogle Scholar
  25. 25.
    Khomskii DI (2005) Role of orbitals in the physics of correlated electron systems. Phys Scr 72:CC8–C14CrossRefGoogle Scholar
  26. 26.
    Bourne SA, Mangombo Z (2004) Phenylamines as building blocks to layered inorganic-organic structures. CrystEngComm 6:437–442CrossRefGoogle Scholar
  27. 27.
    Hansen NK, Coppens P (1978) Electron population analysis of accurate diffraction data. 6. Testing aspherical atom refinements on small-molecule data sets. Acta Cryst A 34:909–921CrossRefGoogle Scholar
  28. 28.
    Srebro M, Autschbach J (2012) Does a molecule-specific density functional give an accurate electron density? The challenging case of the CuCl electric field gradient. J Phys Chem Lett 3:576–581CrossRefGoogle Scholar
  29. 29.
    Bertolotti F, Forni A, Gervasio G, Marabello D, Diana E (2012) Experimental and theoretical charge density of hydrated cupric acetate. Polyhedron 42:118–127CrossRefGoogle Scholar
  30. 30.
    Bouhmaida N, Mendez-Rojaz MA, Perez-Benitez A, Merino G, Fraisse B, Ghermani NE (2010) Experimental electron density study of tetrakis-μ-(acetylsalicylate)dicopper(II): a polymeric structure with Cu···Cu short contacts. Inorg Chem 49:6443–6452CrossRefGoogle Scholar
  31. 31.
    Farrugia LJ, Middlemiss DS, Sillanpää R, Seppälä P (2008) A combined experimental and theoretical charge density study of the chemical bonding and magnetism in 3-amino-propanolato Cu(II) complexes containing weakly coordinated anions. J Phys Chem A 112:9050–9067CrossRefGoogle Scholar
  32. 32.
    Overgaard J, Turel I, Hibbs DE (2007) Experimental electron density study of a complex between copper(II) and the antibacterial quinolone family member ciprofloxacin. Dalton Trans 21:2171–2178CrossRefGoogle Scholar
  33. 33.
    Pillet S, Souhassou M, Lecomte C, Rabu P, Drillon M, Massobrio C (2006) Electron density analysis of the layered antiferromagnetic compound Cu2(OH)3NO3: relationship with the magnetic interaction mechanism. Phys Rev B 73:115116CrossRefGoogle Scholar
  34. 34.
    Jiang B, Friis J, Holmestad R, Zuo JM, O’Keeffe M, Spence JCH (2004) Electron density and implication for bonding in Cu. Phys Rev B 69:245110CrossRefGoogle Scholar
  35. 35.
    Kozisek J, Hansen NK, Fuess H (2002) Nucleophilic addition reaction in coordinated non-linear pseudohalides: experimental charge density analysis in trans-bis(cyanamidonitrato-N:O)bis-(imidazole-N3)copper(II) complex. Acta Cryst B 58:463–470CrossRefGoogle Scholar
  36. 36.
    Belokoneva EL, Gubina YK, Forsyth JB (2001) The charge density distribution and antiferromagnetic properties of azurite Cu3[CO3]2(OH)2. Phys Chem Miner 28:498–507CrossRefGoogle Scholar
  37. 37.
    Belokoneva EL, Gubina YK, Forsyth JB, Brown PJ (2002) The charge-density distribution, its multipole refinement and the antiferromagnetic structure of dioptase, Cu6[Si6O18]·6H2O. Phys Chem Miner 29:430–438CrossRefGoogle Scholar
  38. 38.
    Nelyubina YV, Antipin MY, Belokoneva EL, Lyssenko KA (2007) Influence of weak coordination on the electronic characteristics of the copper(II) atom: charge density analysis in the crystal of azurite. Mendeleev Commun 17:71–73CrossRefGoogle Scholar
  39. 39.
    Lyssenko KA, Vologzhanina AV, Torubaev YV, Nelyubina Y (2014) A comparative study of a mixed-ligand copper(II) complex by the theory of atoms in molecules and the Voronoi tessellation. Mendeleev Commun 24:216–218CrossRefGoogle Scholar
  40. 40.
    APEX2 (2010) Version 2010.3–0. Bruker AXS Inc., MadisonGoogle Scholar
  41. 41.
    SAINT+ (2010) Version 7.68A. Bruker AXS Inc., MadisonGoogle Scholar
  42. 42.
    Blessing RH (1987) Data reduction and error analysis for accurate single crystal diffraction intensities. Crystallogr Rev 1:3–58CrossRefGoogle Scholar
  43. 43.
    Blessing RH (1997) Outlier treatment in data merging. J Appl Crystallogr 30:421–426CrossRefGoogle Scholar
  44. 44.
    Sheldrick GM (1996) SADABS. University of Gottingen, GermanyGoogle Scholar
  45. 45.
    Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122CrossRefGoogle Scholar
  46. 46.
    Volkov A, Macchi P, Farrugia LJ, Gatti C, Mallinson PR, Richter T, Koritsanszky TS (2006) XD2006. University of New York, BuffaloGoogle Scholar
  47. 47.
    Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Kristallogr 220:571–573Google Scholar
  48. 48.
    Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M (2009) CRYSTAL09 user’s manual. University of Torino, TorinoGoogle Scholar
  49. 49.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecule. Oxford University Press, New YorkGoogle Scholar
  50. 50.
    Harihara PC, Pople JA (1973) Influence of polarization functions on molecular-orbital hydrogenation energies. Theoret Chim Acta 28:213–222CrossRefGoogle Scholar
  51. 51.
    Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular-orbital methods. XXIII. A polarization-type basis set for 2nd-row elements. J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  52. 52.
    Rossolov VA, Pople JA, Ratner MA, Windus TL (1998) 6-31G* basis set for atoms K through Zn. J Chem Phys 109:1223–1229CrossRefGoogle Scholar
  53. 53.
    Le Page Y, Gabe EJ (1979) Application of a segment description of the unique set of reflections to data-collection and data reduction. J Appl Crystallogr 12:464–466CrossRefGoogle Scholar
  54. 54.
    Halvorson KE, Patterson C, Willett RD (1990) Structures of bis(4-aminopyridinium) tetrachlorocuprate(II) monohydrate, [C5H7N2]2[CUCL4].H2O, and bis(2-amino-3-hydroxypyridinium) tetrachlorocuprate(II), [C5H7N2O]2[CUCL4]—correlation of CUCL4 2− geometry with hydrogen-bonding and electronic-structure. Acta Cryst B 46:508–519CrossRefGoogle Scholar
  55. 55.
    Alonso JA, Martinez-Lope MJ, Casais MT (2000) Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg Chem 39:917–923CrossRefGoogle Scholar
  56. 56.
    Larsen KP (1974) Crystal-structure of anilinium tetrachlorocuprate(II). Acta Chem Scand A 28:194–200CrossRefGoogle Scholar
  57. 57.
    Greenhough TJ, Ladd MFC (1977) New investigation of [(NH3.CH2.CH2)2NH2](CUCL4) at 20°C. Acta Cryst B 33:1266–1269CrossRefGoogle Scholar
  58. 58.
    Tichy K, Benes J, Halg W, Arend H (1978) Neutron-diffraction study of twinned crystals of ethylenediammonium copper tetrachloride and ethylenediammonium manganese tetrachloride. Acta Cryst B 34:2970–2981CrossRefGoogle Scholar
  59. 59.
    Pabst I, Fuess H, Bats JW (1987) Structure of monomethylammonium tetrachlorocuprate at 297 and 100-K. Acta Cryst C 43:413–416CrossRefGoogle Scholar
  60. 60.
    Willett RD (1990) Structures of the antiferrodistortive layer perovskites bis(phenethylammonium) tetrahalocuprate(II), halo = CL-, BR. Acta Cryst C 46:565–568CrossRefGoogle Scholar
  61. 61.
    Diaz I, Fernandez V, Martinez JL, Beyer L, Pilz A, Muller U (1998) Thermochromic chloro- and bromocuprates: [C(NH2)3]2[CuBr4], (H3CC2N2SNH3)2[Cu2Br6], (C7N3H14)2[CuCl4], (C7N3H14)2[CuBr4], [(Cl, Br)C3N2H6][CuCl3OH2] and (BrC3N2H6)2[CuBr4]. Z Naturforsch B 53:933–938CrossRefGoogle Scholar
  62. 62.
    Cremer D, Kraka E (1984) Chemical-bonds without bonding electron-density—does the difference electron-density analysis suffice for a description of the chemical-bond. Angew Chem Int Ed Engl 23:627–628CrossRefGoogle Scholar
  63. 63.
    Abramov YA (1997) On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Cryst A 53:264–272CrossRefGoogle Scholar
  64. 64.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems. J Chem Phys 117:5529–5542CrossRefGoogle Scholar
  65. 65.
    Bader RF (1990) Atoms in molecules: a quantum theory. The international series of monographs of chemistry, no.22. Clarendon Press, OxfordGoogle Scholar
  66. 66.
    Farrugia LJ, Evans C (2005) Metal-metal bonding in bridged ligand systems: experimental and theoretical charge densities in Co33-CX)(CO)9 (X = H, cl). C R Chimie 8:1566–1583CrossRefGoogle Scholar
  67. 67.
    Schmider HL, Becke AD (2000) Chemical content of the kinetic energy density. J Mol Struct (THEOCHEM) 527:51–61CrossRefGoogle Scholar
  68. 68.
    Schmider HL, Becke AD (2002) Two functions of the density matrix and their relation to the chemical bond. J Chem Phys 116:3184–3193CrossRefGoogle Scholar
  69. 69.
    Tsirelson VG, Stash AI (2002) Determination of the electron localization function from electron density. Chem Phys Lett 351:142–148CrossRefGoogle Scholar
  70. 70.
    Stash AI, Tsirelson VG (2005) Modern possibilities for calculating some properties of molecules and crystals from the experimental electron density. Crystallogr Rep 50:177–184CrossRefGoogle Scholar
  71. 71.
    Stash AI, Tsirelson VG (2014) Developing WinXPRO: a software for determination of the multipole-model-based properties of crystals. J Appl Crystallogr 47:2086–2089CrossRefGoogle Scholar
  72. 72.
    Kamiński R, Domagała S, Jarzembska KN, Hoser AA, Sanjuan-Szklarz WF, Gutmann MJ, Makal A, Malińska M, Bąk JM, Woźniak K (2014) Statistical analysis of multipole-model-derived structural parameters and charge-density properties from high-resolution X-ray diffraction experiments. Acta Cryst A 70:72–91CrossRefGoogle Scholar
  73. 73.
    McKinnon JJ, Spackman MA (1998) Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem Eur J 4:2136–2141CrossRefGoogle Scholar
  74. 74.
    Dobrzycki L, Woźniak K (2007) Structural consequences of benzidine dihydrochloride substitution in the solid state. CrystEngComm 9:1029–1040CrossRefGoogle Scholar
  75. 75.
    Dobrzycki L, Woźniak K (2008) Structures of hybrid inorganic-organic salts with benzidine dication derivatives. CrystEngComm 10:525–533CrossRefGoogle Scholar
  76. 76.
    Dobrzycki L, Woźniak K (2008) Inorganic-organic hybrid salts of diaminobenzenes and related cations. CrystEngComm 10:577–589CrossRefGoogle Scholar
  77. 77.
    Holladay A, Leung P, Coppens P (1983) Generalized relations between d-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray-diffraction data. Acta Cryst A 39:377–387CrossRefGoogle Scholar
  78. 78.
    Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen-bonds on the basis of the charge-density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  79. 79.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst B 60:627–668CrossRefGoogle Scholar
  80. 80.
    Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32CrossRefGoogle Scholar
  81. 81.
    Henn J, Meindl K (2014) About systematic errors in charge-density studies. Acta Cryst A 70:248–256CrossRefGoogle Scholar
  82. 82.
    Henn J, Meindl K (2014) More about systematic errors in charge-density studies. Acta Cryst A 70:499–513CrossRefGoogle Scholar
  83. 83.
    Henn J, Meindl K (2015) Two common sources of systematic errors in charge density studies. Int J Mater Sci Phys 1:417–430Google Scholar
  84. 84.
    Henn J, Schönleber A (2013) More about residual values. Acta Cryst A 69:549–558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Biological and Chemical Research Centre, Department of ChemistryUniversity of WarsawWarszawaPoland

Personalised recommendations