Advertisement

Structural Chemistry

, Volume 28, Issue 6, pp 1843–1851 | Cite as

Pnicogen bond interaction between PF2Y (Y = –C☰N, –N☰C) with NH3, CH3OH, H2O, and HF molecules

  • Eslam Abroushan
  • Abedien Zabaradsti
  • Saeed Farhadi
  • Ahmad Abodolmaleki
Original Research

Abstract

Ab initio calculations have been carried out at MP2/aug-cc-pVDZ level to investigate the X…PF2Y pnicogen bond interactions (Y = –C☰N, –N☰C; X = NH3, CH3OH, H2O, and HF molecules). Characteristics of X…PF2CN complexes have been compared with X…PF2NC complexes for a specific X molecule. Results are dealing with stronger pnicogen bond interaction in the X…PF2CN systems. For all X…PF2Y complexes, strength of pnicogen bond interaction increased with basicity of X molecules. NBO and AIM methodologies were used to analyze the pnicogen bond interactions in X…PF2Y adducts. Also, energy decomposition analysis (EDA) was carried out on the intermolecular interactions in the X…PF2Y complexes.

Keywords

Pnicogen bond PF2CN PF2NC Intermolecular interactions Red shift 

Supplementary material

11224_2017_968_MOESM1_ESM.docx (116 kb)
ESM 1 (DOCX 115 kb)

References

  1. 1.
    Raynai M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM (2014) Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem Soc Rev 43:1660–1733CrossRefGoogle Scholar
  2. 2.
    Schneider HS, Schiestel T, Zimmermann P (1992) Host–guest supramolecular chemistry. 34. The incremental approach to noncovalent interactions: Coulomb and van der Waals effects in organic ion pairs. J Am Chem Soc 114(20):7698–7703CrossRefGoogle Scholar
  3. 3.
    Tkatchenko A, Alfe D, Kim KS (2012) First-principles modeling of non-covalent interactions in supramolecular systems: the role of many-body effects. J Chem Theory Comput 8(11):4317–4322CrossRefGoogle Scholar
  4. 4.
    Khavasi HR, Ghanbarpour A, Tehrani AA (2016) The role of intermolecular interactions involving halogens in the supramolecular architecture of a series of Mn(II) coordination compounds. RSC Adv 6:2422–2430CrossRefGoogle Scholar
  5. 5.
    Desiraju GR (1997) Designer crystals: intermolecular interactions, network structures and supramolecular synthons. Chem Commum 16:1475–1482CrossRefGoogle Scholar
  6. 6.
    Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Grabowski SJ (2006) Hydrogen bonding: new insights, vol 3. Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  8. 8.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  9. 9.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  10. 10.
    Arman HHD, Metrangolo P, Resnati G (2008) Halogen bonding: fundamentals and applications, vol 126. Springer, New YorkGoogle Scholar
  11. 11.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13(2):305–311CrossRefGoogle Scholar
  12. 12.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38(5):386–395CrossRefGoogle Scholar
  13. 13.
    Eskandari K, Zariny H (2010) Halogen bonding: a lump−hole interaction. Chem Phys Lett 492(1–3):9–13CrossRefGoogle Scholar
  14. 14.
    Jahromi H, Eskandari K (2013) Halogen bonding: a theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules. Struct Chem 24(4):1281–1287CrossRefGoogle Scholar
  15. 15.
    Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theor Comput 4(2):232–242CrossRefGoogle Scholar
  16. 16.
    Del Bene JE, Alkorta I, Elguero J (2008) Spin–spin coupling across intermolecular F–Cl…N halogen bonds. J Phys Chem A 112(34):7925–7929CrossRefGoogle Scholar
  17. 17.
    Solimannejad M, Malekani M, Alkorta I (2013) Substituent effects on the cooperativity of halogen bonding. J Phys Chem A 117(26):5551–5557CrossRefGoogle Scholar
  18. 18.
    Scheiner S (2013) Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm 15(16):3119–3124CrossRefGoogle Scholar
  19. 19.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker. Chem Eur J 17(22):6034–6038CrossRefGoogle Scholar
  20. 20.
    Guan L, Mo Y (2014) Electron transfer in pnicogen bonds. J Phys Chem A 118(39):8911–8921CrossRefGoogle Scholar
  21. 21.
    Del Bene JE, Alkorta I, Elguero J (2015) In: Scheiner S (ed) Noncovalent forces: challenges and advances in computational chemistry and physics, vol 19. Springer, New YorkGoogle Scholar
  22. 22.
    Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46(2):280–288CrossRefGoogle Scholar
  23. 23.
    Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113(11):1609–1620CrossRefGoogle Scholar
  24. 24.
    Del Bene JE, Alkorta I, Elguero J (2015) In: Scheiner S (ed) The pnicogen bond in review: structures, binding energies, bonding properties and spin–spin coupling constants of complexes stabilized by pnicogen bonds, in noncovalent forces, challenges and advances in computational chemistry and physics, vol 19. ed. Springer, BerlinGoogle Scholar
  25. 25.
    Hill WE, Silva-Trivino LM (1978) Preparation and characterization of di(tertiary phosphines) with electronegative substituents. 1. Symmetrical derivatives. Inorg Chem 17(9):2495–2498CrossRefGoogle Scholar
  26. 26.
    Hill WE, Silva-Trivino LM (1979) Preparation and characterization of di(tertiary phosphines) with electronegative substituents. 2. Unsymmetrical derivatives. Inorg Chem 18(2):361–364CrossRefGoogle Scholar
  27. 27.
    Politzer P, Murray J, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15(27):11178–11189CrossRefGoogle Scholar
  28. 28.
    Scheiner S (2011) Effects of multiple substitution upon the P…N noncovalent interaction. Chem Phys 387(1–3):79–84CrossRefGoogle Scholar
  29. 29.
    Adhikari U, Scheiner S (2012) Substituent effects on Cl…N, S…N, and P…N noncovalent bonds. J Phys Chem A 116(13):3487–3497CrossRefGoogle Scholar
  30. 30.
    Adhikari U, Scheiner S (2012) Effects of carbon chain substituents on the P…N noncovalent bond. Chem Phys Lett 536:30–33CrossRefGoogle Scholar
  31. 31.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512(4–6):184–187CrossRefGoogle Scholar
  32. 32.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J Phys Chem A 115(46):13724–13731CrossRefGoogle Scholar
  33. 33.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen bonded complexes of PO2X (X = F, Cl) with nitrogen bases. J Phys Chem A 117(40):10497–10503CrossRefGoogle Scholar
  34. 34.
    Del Bene JE, Alkorta I, Elguero J (2013) Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C·PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2. J Phys Chem A 117(31):6893–6903CrossRefGoogle Scholar
  35. 35.
    Del Bene JE, Alkorta I, Elguero J (2013) Properties of complexes H2C=(X)P:PXH2, for X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2:P…P pnicogen bonding at σ-holes and π-holes. J Phys Chem A 117(45):11592–11604CrossRefGoogle Scholar
  36. 36.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2. J Phys Chem A 117(23):4981–4987CrossRefGoogle Scholar
  37. 37.
    Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE (2013) Exploring (NH2F)2, H2FP:NFH2, and (PH2F)2 potential surfaces: hydrogen bonds or pnicogen bonds? J Phys Chem A 117(1):183–191CrossRefGoogle Scholar
  38. 38.
    Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the P…P pnicogen bond. J Chem Theory Comput 8(7):2320–2327CrossRefGoogle Scholar
  39. 39.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2012) Interplay of F−H…F hydrogen bonds and P…N pnicogen bonds. J Phys Chem A 116(36):9205–9213CrossRefGoogle Scholar
  40. 40.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2013) Phosphorus as a simultaneous electron-pair acceptor in intermolecular P…N pnicogen bonds and electron-pair donor to Lewis acids. J Phys Chem A 117(14):3133–3141CrossRefGoogle Scholar
  41. 41.
    Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) Concerted interaction between pnicogen and halogen bonds in XCl–FH2P–NH3 (X = F, OH, CN, NC, and FCC). Chem Phys Chem 13(5):1205–1212CrossRefGoogle Scholar
  42. 42.
    An XL, Li R, Li QZ, Liu XF, Li WZ, Cheng JB (2012) Substitution, cooperative, and solvent effects on π pnicogen bonds in the FH2P and FH2As complexes. J Mol Model 18(9):4325–4332CrossRefGoogle Scholar
  43. 43.
    Li Q, Zhuo H, Yang X, Cheng J, Li W, Loffredo RE (2014) Cooperative and diminutive effects of pnicogen bonds and cation–π interactions. Chem Phys Chem 15(3):500–506CrossRefGoogle Scholar
  44. 44.
    Solimannejad M, Bayati E, Esrafili MD (2014) Enhancement effect of lithium bonding on the strength of pnicogen bonds: XH2P…NCLi…NCY as a working model (X = F, Cl; Y = H, F, Cl, CN). Mol Phys 112(15):2058–2062CrossRefGoogle Scholar
  45. 45.
    Scheiner S (2011) Effects of substituents upon the P…N noncovalent interaction: the limits of its strength. J Phys Chem A 115(41):11202–11209CrossRefGoogle Scholar
  46. 46.
    Scheiner S, Adhikari U (2011) Abilities of different electron donors (D) to engage in a P…D noncovalent interaction. J Phys Chem A 115(40):11101–11110CrossRefGoogle Scholar
  47. 47.
    Del Bene JE, Alkorta I, Elguero J (2014) Influence of substituent effects on the formation of P…Cl pnicogen bonds or halogen bonds. J Phys Chem A 118(12):2360–2366CrossRefGoogle Scholar
  48. 48.
    Alkorta I, Elguero SM (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118(5):947–953CrossRefGoogle Scholar
  49. 49.
    Hermida-Ramon JM, Cabaleiro-Lago EM, Rodríguez-Otero J (2005) Theoretical characterization of structures and energies of benzene-(H2S)n and (H2S)n (n = 1–4) clusters. J Chem Phys 122(20):204315–204315CrossRefGoogle Scholar
  50. 50.
    Osuna RM, Hernandez V, Navarrete JTL, DOria E, Novoa JJ (2011) Theoretical evaluation of the nature and strength of the F…F intermolecular interactions present in fluorinated hydrocarbons. Theor Chem Accounts 128(4):541–553CrossRefGoogle Scholar
  51. 51.
    Riley KE, Murray JS, Fanfrlík J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17(12):3309–3318CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian—09, revision A.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  53. 53.
    van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) State of the art in counterpoise theory. Chem Rev 94(7):1873–1885CrossRefGoogle Scholar
  54. 54.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566CrossRefGoogle Scholar
  55. 55.
    Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers. J Chem Phys 105(24):11024–11031CrossRefGoogle Scholar
  56. 56.
    Bader RFW, Halpen J, Green MLH (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  57. 57.
    Popelier PLA (2000) Atoms in molecules: an introduction. Essex, England, Pearson Education LimitedCrossRefGoogle Scholar
  58. 58.
    Keith TA (2011) AIMAll; TK Gristmill Software: Overland Park, KS, aim.tkgristmill.com.
  59. 59.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  60. 60.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2004) NBO 5.G. University of Wisconsin, Madison, WIGoogle Scholar
  61. 61.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, et al (2008) GAMESS, version 11. Iowa State University, Ames, IAGoogle Scholar
  62. 62.
    Bulat F, Toro-Labbe A, Brinck T, Murray J, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691CrossRefGoogle Scholar
  63. 63.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109(26):7968–7979CrossRefGoogle Scholar
  64. 64.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33(5):580–592CrossRefGoogle Scholar
  65. 65.
    Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323CrossRefGoogle Scholar
  66. 66.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967CrossRefGoogle Scholar
  67. 67.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99(6):391–403Google Scholar
  68. 68.
    Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46(1):1–10CrossRefGoogle Scholar
  69. 69.
    Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C═O…H–O hydrogen bond in H2CO…H2O and H2CO…2H2O. J Chem Phys 55(3):1236–1244CrossRefGoogle Scholar
  70. 70.
    Grabowski SJ (2000) BeH2 as a proton-accepting molecule for dihydrogen bonded systems—ab initio study. J Mol Struct 553(1–3):151–156CrossRefGoogle Scholar
  71. 71.
    Wojtulewski S, Grabowski SJ (2002) Unconventional F–H⋯π hydrogen bonds—ab initio and AIM study. J Mol Struct 605(2–3):235–240CrossRefGoogle Scholar
  72. 72.
    Grabowski SJ, Sokalski WA, Leszczynski J (2004) Nature of X–H−δH–Y dihydrogen bonds and X–H…σ interactions. J Phys Chem A 108:5823–5830CrossRefGoogle Scholar
  73. 73.
    Mottishaw JD, Erck AR, Kramer JH, Sun H, Koppang M (2015) Electrostatic potential maps and natural bond orbital analysis: visualization and conceptualization of reactivity in Sanger’s reagent. J Chem Educ 92(11):1846–1852CrossRefGoogle Scholar
  74. 74.
    Khan I, Panini P, Ud-Din Khan S, Rana UA, Andleeb H, Chopra D, Hameed S, Simpson J (2015) Exploiting the role of molecular electrostatic potential, deformation density, topology, and energetics in the characterization of S…N and Cl…N supramolecular motifs in crystalline triazolothiadiazoles. Cryst Growth Des 16(3):1371–1386CrossRefGoogle Scholar
  75. 75.
    Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131(1):014102–014106CrossRefGoogle Scholar
  76. 76.
    Bader RFW, Halpen J, Green MLH (1990) Atoms in molecules: a quantum theory. The international series of monographs of chemistry. Clarendon Press, OxfordGoogle Scholar
  77. 77.
    Nakanishi W, Hayashi S, Narahara K (2009) Polar coordinate representation of Hb(rc) versus (h2/8m)∇2ρb(rc) at BCP in AIM analysis: classification and evaluation of weak to strong interactions. J Phys Chem A 113(37):10050–10057CrossRefGoogle Scholar
  78. 78.
    Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23(8):627–628CrossRefGoogle Scholar
  79. 79.
    Bone RGA, Bader RFW (1996) Identifying and analyzing intermolecular bonding interactions in van der Waals molecules. J Phys Chem 100(26):10892–10911CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Eslam Abroushan
    • 1
  • Abedien Zabaradsti
    • 1
  • Saeed Farhadi
    • 1
  • Ahmad Abodolmaleki
    • 2
  1. 1.Department of ChemistryLorestan UniversityKhorramabadIran
  2. 2.Department of PhysicsLorestan UniversityKhorramabadIran

Personalised recommendations