Structural Chemistry

, Volume 28, Issue 6, pp 1831–1842 | Cite as

Computational study on the mechanism and kinetics of Cl-initiated oxidation of ethyl acrylate

  • Shiqing Zhang
  • Jianfei Sun
  • Haijie Cao
  • Qingan Qiao
  • Maoxia He
Original Research
  • 160 Downloads

Abstract

The comprehensive and reasonable mechanisms of Cl-initiated oxidation of ethyl acrylate (EA) have been proposed by computing at the M06-2X/6-311++G(3df, 2p)//M06-2X/6-31+G(d, p) level of theory. The primary reaction includes eight channels: two Cl additions and six H abstractions. Comparing all calculated results, the reactions of Cl addition are easier to occur than those of H abstraction. However, the hydrogen abstraction from the -CH2 and -CH3 groups cannot be ignored. Based on the Rice–Ramsperger–Kassel–Marcus (RRKM) theory, the rate constants are determined employing the MESMER program. The calculated total rate constant (at 298 K and 760 Torr) is 1.80 × 10−10 cm3 molecule−1 s−1 and shows negative dependence on temperature in the range of 198–648 K. The rate constants for Cl atoms of methyl acrylate (MA), EA, methyl methacrylate (MMA), and allyl acetate (AAC) are k MMA(Cl) > k EA(Cl) > k MA(Cl) > k AAC(Cl). The atmospheric lifetime of EA is 154.3 h for Cl-initiated oxidation which is compared with that of the reaction of other oxidants (OH radicals, O3 molecules, and NO3 radicals) with EA.

Keywords

Cl atoms Ethyl acrylate Mechanisms Rate constant 

Notes

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (NSFC Nos. 21377001, 21477065, and 21077067) and Shandong Provincial Natural Science Foundation of China (Grant ZR2014BM037 and ZR2014EMM020).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_967_MOESM1_ESM.docx (16.1 mb)
ESM 1 (DOCX 16444 kb).

References

  1. 1.
    Knipping EM, Dabdub D (2003) Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ Sci Technol 37(2):275–284CrossRefGoogle Scholar
  2. 2.
    Young CJ, Washenfelder RA, Edwards PM, Parrish DD, Gilman JB, Kuster WC, Mielke LH, Osthoff HD, Tsai C, Pikelnaya O (2014) Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles. Atmos Chem Phys 14(7):3427–3440CrossRefGoogle Scholar
  3. 3.
    Spicer CW, Chapman EG, Finlaysonpitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394(6691):353–356CrossRefGoogle Scholar
  4. 4.
    Ezell MJ, Wang W, Ezell AA, Soskin G, Finlaysonpitts BJ (2002) Kinetics of reactions of chlorine atoms with a series of alkenes at 1 atm and 298 K: structure and reactivity. Phys Chem Chem Phys 4(23):5813–5820CrossRefGoogle Scholar
  5. 5.
    Finley BD, Saltzman ES (2006) Measurement of Cl2 in coastal urban air. Geophys Res Lett 33(11):156–185CrossRefGoogle Scholar
  6. 6.
    Finley BD, Saltzman ES (2008) Observations of Cl2, Br2, and I2 in coastal marine air. J Geophys Res Atmos 113(D21):6089–6098CrossRefGoogle Scholar
  7. 7.
    Lawler MJ, Sander R, Carpenter LJ, Lee JD, Glasow RV, Sommariva R, Saltzman ES (2011) HOCl and Cl2 observations in marine air. Atmos Chem Phys 11(15):7617–7628CrossRefGoogle Scholar
  8. 8.
    PLT, Sarah O, JDN, CBM, DTA (2000) Anthropogenic sources of chlorine and ozone formation in urban atmospheres. Environ Sci Technol 34(21):4470–4473CrossRefGoogle Scholar
  9. 9.
    Riedel TP, Bertram TH, Crisp TA, Williams EJ, Lerner BM, Vlasenko A, Li SM, Gilman J, Gouw JD, Bon DM (2012) Nitryl chloride and molecular chlorine in the coastal marine boundary layer. Environ Sci Technol 46(19):10463–10470CrossRefGoogle Scholar
  10. 10.
    Singh HB, Kasting JF (1988) Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J Atmos Chem 7(3):261–285CrossRefGoogle Scholar
  11. 11.
    Osthoff HD, Roberts JM, Ravishankara AR, Williams EJ, Lerner BM, Sommariva R, Bates TS, Coffman D, Quinn PK, Dibb JE (2008) High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nat Geosci 1(5):324–328CrossRefGoogle Scholar
  12. 12.
    Thornton JA, Kercher JP, Riedel TP, Wagner NL, Cozic J, Holloway JS, Dubé WP, Wolfe GM, Quinn PK, Middlebrook AM (2010) A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 464(7286):271–274CrossRefGoogle Scholar
  13. 13.
    Mielke LH, Furgeson A, Osthoff HD (2011) Observation of ClNO2 in a mid-continental urban environment. Environ Sci Technol 45(20):8889–8896CrossRefGoogle Scholar
  14. 14.
    Porrero MPM, García GI, Ruiz JLE, Valle AT, Galán BC, Muñoz MSS (2010) Gas phase reactions of unsaturated esters with Cl atoms. Environ Sci Pollut Res Int 17(3):539–546CrossRefGoogle Scholar
  15. 15.
    Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob Biogeochem Cycles 6(4):389–430CrossRefGoogle Scholar
  16. 16.
    Williams DC, O’Rji LN, DAS (1993) Kinetics of the reactions of OH radicals with selected acetates and other esters under simulated atmospheric conditions. Int J Chem Kinet 25(7):539–548CrossRefGoogle Scholar
  17. 17.
    Van OSG, Champeau RM, Richard P (2006) Ozonolysis applications in drug synthesis. Chem Rev 106(7):2990–3001CrossRefGoogle Scholar
  18. 18.
    Singh H, Chen Y, Staudt A, Jacob D, Blake D, Heikes B, Snow J (2001) Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 410(6832):1078–1081CrossRefGoogle Scholar
  19. 19.
    Lide DR, Kehiaian HV (1994) CRC handbook of thermophysical and thermochemical data. CRC, Boca RatonGoogle Scholar
  20. 20.
    Graedel TE (1978) Chemical compounds in the atmosphere. Academic, New YorkGoogle Scholar
  21. 21.
    Teruel MA, Benitez-Villalba J, Caballero N, Blanco MB (2012) Gas-phase oxidation of methyl crotonate and ethyl crotonate. Kinetic study of their reactions toward OH radicals and Cl atoms. J Phys Chem A 116(24):6127–6133CrossRefGoogle Scholar
  22. 22.
    Gallego-Iniesta MAP, Cabañas B, Salgado S, Martínez E, Martín P (2014) Estimation of gas-phase rate coefficients for the reactions of a series of α,β-unsaturated esters with OH, NO3, O3 and Cl. Atmos Environ 90:133–145CrossRefGoogle Scholar
  23. 23.
    Pankow JF, Luo W, Bender DA, Isabelle LM, Hollingsworth JS, Chen C, Asher WE, Zogorski JS (2003) Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos Environ 37(36):5023–5046CrossRefGoogle Scholar
  24. 24.
    Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2014) Products and mechanism of the reactions of OH radicals and Cl atoms with methyl methacrylate (CH2═C(CH3)C(O)OCH3) in the presence of NOx. Environ Sci Technol 48(3):1692–1699CrossRefGoogle Scholar
  25. 25.
    Biswas P (2015) Theoretical investigation of an atmospherically important reaction between methyl methacrylate and Cl atom: a mechanistic and kinetic approach. J Theor Comput Chem 14(02):150205174036004CrossRefGoogle Scholar
  26. 26.
    Silva MDRGD, Neves HJCD (1999) Complementary use of hyphenated purge-and-trap gas chromatography techniques and sensory analysis in the aroma profiling of strawberries (Fragaria ananassa). J Agric Food Chem 47(11):4568–4573CrossRefGoogle Scholar
  27. 27.
    Williams GM, Iatropoulos MJ (2009) Evaluation of potential human carcinogenicity of the synthetic monomer ethyl acrylate. Regul Toxicol Pharmacol 53(1):6–15CrossRefGoogle Scholar
  28. 28.
    Sun Y, Cao H, Han D, Li J, He M, Wang C (2012) Computational study of the reaction mechanism and kinetics of ethyl acrylate ozonolysis in atmosphere. Chem Phys 402(23):6–13CrossRefGoogle Scholar
  29. 29.
    Bernard F, Eyglunent G, Daële V, Mellouki A (2010) Kinetics and products of gas-phase reactions of ozone with methyl methacrylate, methyl acrylate, and ethyl acrylate. J Phys Chem A 114(32):8376–8383CrossRefGoogle Scholar
  30. 30.
    Program NT (1986) NTP carcinogenesis studies of ethyl acrylate (CAS no. 140-88-5) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program Technical Report 259Google Scholar
  31. 31.
    Teruel MA, Lane SI, Mellouki A, Solignac G, Bras GL (2006) OH reaction rate constants and UV absorption cross-sections of unsaturated esters. Atmos Environ 40(20):3764–3772CrossRefGoogle Scholar
  32. 32.
    Wang K, Ge M, Wang W (2010) Kinetics of the gas-phase reactions of NO3 radicals with ethyl acrylate, n-butyl acrylate, methyl methacrylate and ethyl methacrylate. Atmos Environ 44(44):1847–1850CrossRefGoogle Scholar
  33. 33.
    Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos Trans A Math Phys Eng Sci 372(2011):20120476–20120476CrossRefGoogle Scholar
  34. 34.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2010) Gaussian 09, revision B. 01. Gaussian Inc, WallingfordGoogle Scholar
  35. 35.
    Gour NK, Deka RC (2014) Theoretical study on the gas-phase reactions of ethyl butyrate with OH radicals at 298 K. Monatshefte Fuer Chemie/chemical Monthly 145(11):1759–1767CrossRefGoogle Scholar
  36. 36.
    Li X, Cao H, Han D, Zhang S, He M (2016) The mechanism and kinetic studies for Cl-initiated oxidation of allyl acetate in troposphere. Comp Theor Chem 1087:48–56CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241CrossRefGoogle Scholar
  38. 38.
    Vega-Rodriguez A, Alvarez-Idaboy JR (2009) Quantum chemistry and TST study of the mechanisms and branching ratios for the reactions of OH with unsaturated aldehydes. Phys Chem Chem Phys 11(35):7649–7658CrossRefGoogle Scholar
  39. 39.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654CrossRefGoogle Scholar
  40. 40.
    Galano A (2011) Mechanism and kinetics of the hydroxyl and hydroperoxyl radical scavenging activity of N-acetylcysteine amide. Theor Chem Accounts 130(1):51–60CrossRefGoogle Scholar
  41. 41.
    Mandal D, Sahu C, Bagchi S, Das AK (2013) Kinetics and mechanism of the tropospheric oxidation of vinyl acetate initiated by OH radical: a theoretical study. J Phys Chem A 117(18):3739–3750CrossRefGoogle Scholar
  42. 42.
    Dash MR, Rajakumar B (2015) Theoretical investigations of the gas phase reaction of limonene (C10H16) with OH radical. Mol Phys 113(21):3202–3215CrossRefGoogle Scholar
  43. 43.
    Hajipour AR, Karimzadeh M, Jalilvand S, Farrokhpour H, Chermahini AN (2014) A complete scheme of tautomerism on diacetyl monoxime in the gas and solution phases. A comparative DFT study between B3LYP and M06-2X functionals. Comp Theor Chem 1045(1):10–21CrossRefGoogle Scholar
  44. 44.
    Sun J, Cao H, Zhang S, Li X, He M (2016) Theoretical study on the mechanism of the gas phase reaction of methoxybenzene with ozone. RSC Advances 6Google Scholar
  45. 45.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154–2161CrossRefGoogle Scholar
  46. 46.
    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527CrossRefGoogle Scholar
  47. 47.
    Glowacki DR, Liang CH, Morley C, Pilling MJ, Robertson SH (2012) MESMER: an open-source master equation solver for multi-energy well reactions. J Phys Chem A 116(38):9545–9560CrossRefGoogle Scholar
  48. 48.
    Li J, Cao H, Han D, Li M, Li X, He M, Ma S (2014) Computational study on the mechanism and kinetics of Cl-initiated oxidation of vinyl acetate. Atmos Environ 94:63–73CrossRefGoogle Scholar
  49. 49.
    Han D, Cao H, Sun Y, He M (2012) Mechanistic and kinetic study on the ozonolysis of ethyl vinyl ether and propyl vinyl ether. Struct Chem 23(23):499–514CrossRefGoogle Scholar
  50. 50.
    Han D, Cao H, Li M, Li X, Zhang S, He M, Hu J (2015) Computational study on the mechanisms and rate constants of the Cl-initiated oxidation of methyl vinyl ether in the atmosphere. J Phys Chem A 119(4):61–69CrossRefGoogle Scholar
  51. 51.
    Bunker D (1972) Unimolecular reactions. P. J. Robinson and K. A. Holbrook. Wiley, New York, 1972. xviii, 372 pp., illus. $19.95. Science 178 (4064):973–973Google Scholar
  52. 52.
    Sun Y, Zhang Q, Hu J, Chen J, Wang W (2014) Theoretical study for OH radical-initiated atmospheric oxidation of ethyl acrylate. Chemosphere 119c:626–633Google Scholar
  53. 53.
    Zhang S, Cao H, Li X, Sun J, He M (2016) Theoretical study on the mechanisms and kinetics of Cl-initiated oxidation of methyl acrylate. Comp Theor Chem 1091:99–106CrossRefGoogle Scholar
  54. 54.
    Han D, Cao H, Li J, Li M, He M, Hu J (2014) Computational study on the mechanisms and rate constants of the OH-initiated oxidation of ethyl vinyl ether in atmosphere. Chemosphere 111:61–69CrossRefGoogle Scholar
  55. 55.
    Grosjean E, Grosjean D (1998) Rate constants for the gas-phase reaction of ozone with unsaturated oxygenates. Int J Chem Kinet 30(1):21–29CrossRefGoogle Scholar
  56. 56.
    Canosamas CE, Carr S, King MD, Shallcross DE, Thompson KC, Wayne RP (1999) A kinetic study of the reactions of NO3 with methyl vinyl ketone, methacrolein, acrolein, methyl acrylate and methyl methacrylate. Phys Chem Chem Phys 1(1):4195–4202CrossRefGoogle Scholar
  57. 57.
    Gao R, Zhu L, Zhang Q, Wang W (2014) Atmospheric oxidation mechanism and kinetic studies for OH and NO3 radical-initiated reaction of methyl methacrylate. Int J Mol Sci 15(3):5032–5044CrossRefGoogle Scholar
  58. 58.
    Cao H, Li X, Han D, Zhang S, He M (2016) OH-initiated tropospheric photooxidation of allyl acetate (AAC): a theoretical study. Can J Chem 94(7):648–657CrossRefGoogle Scholar
  59. 59.
    He M, Sun Y, Cao H, Han D, Hu J (2012) Theoretical study of the ozonolysis of allyl acetate: mechanism and kinetics. Struct Chem 23(1):201–208CrossRefGoogle Scholar
  60. 60.
    Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR, Rowland FS (1996) Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights. J Geophys Res Atmos 101(101):4331–4340CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shiqing Zhang
    • 1
  • Jianfei Sun
    • 1
  • Haijie Cao
    • 2
  • Qingan Qiao
    • 3
  • Maoxia He
    • 1
  1. 1.Environment Research InstituteShandong UniversityJinanPeople’s Republic of China
  2. 2.Institute of Materials for Energy and EnvironmentQingdao UniversityQingdaoPeople’s Republic of China
  3. 3.School of Chemistry and Materials ScienceLudong UniversityYantaiChina

Personalised recommendations