Skip to main content
Log in

The effects of single-walled carbon nanotubes (SWCNTs) on the structure and function of human serum albumin (HSA): Molecular docking and molecular dynamics simulation studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Here, the interaction of single-walled carbon nanotubes (SWCNTs) and human serum albumin (HSA) as one of the most important proteins for carrying and binding of drugs was investigated and the impact of radius to volume ratio and chirality of the SWCNTs was evaluated using molecular docking method. Molecular docking results represented that zigzag SWCNT with radius to volume ratio equal to 6.77 × 10−3 Å−2 has the most negative binding energy (−17.16 kcal mol−1) and binds to the HSA cleft by four π–cation interactions. To study the changes of HSA structure, the complex of HSA–SWCNT was subjected to 30 ns molecular dynamics simulation. The MD results showed that HSA was compressed about 2% after interaction with SWCNT. The equilibrated structure of HSA–SWCNT complex was used to compare the binding of warfarin to HSA in the absence and presence of SWCNT. The obtained results represent that warfarin-binding site was changed in the presence of SWCNT and its binding energy was increased. Really, warfarin was bound on the surface of SWCNT instead of its binding site on HSA. It means that HSA function as a carrier for warfarin is altered, the free concentration of warfarin is changed, and its release is decreased in the presence of SWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao YL, Nalwa HS (2006) Nanotoxicology. American Scientific Publishers, California

    Google Scholar 

  2. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) ACS Nano 3:307–316

    Article  CAS  Google Scholar 

  3. Liu N, Zhang Q, Chan-Park MB, Li C, Chen P (2009) Nanoscience in biomedicine. Springer, Germany

    Google Scholar 

  4. Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Nanomedicine 5:1277–1301

    Article  CAS  Google Scholar 

  5. Gorityala B, Ma J, Wang X, Chen P, Liu X (2010) Chem Soc Rev 39:2925–2934

    Article  CAS  Google Scholar 

  6. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Nano Lett 6:562–567

    Article  CAS  Google Scholar 

  7. Bhirde AA, Patel V, Gavard J (2009) ACS Nano 3:307–316

    Article  CAS  Google Scholar 

  8. Gilbert N (2009) Nature 460:937–937

    Article  CAS  Google Scholar 

  9. Donaldson K, Poland CA (2009) Nat Nanotechnol 4:708–710

    Article  CAS  Google Scholar 

  10. Zhao Y, Xing G, Chai Z (2008) Nat Nanotechnol 3:191–192

    Article  CAS  Google Scholar 

  11. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Nature 444:267–269

    Article  CAS  Google Scholar 

  12. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Nat Nanotechnol 2:713–717

    Article  CAS  Google Scholar 

  13. Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) J Biol Chem 278:50212–50216

    Article  CAS  Google Scholar 

  14. Zuo G, Huang Q, Wei G, Zhou R, Fang H (2010) ACS Nano 4:7508–7514

    Article  CAS  Google Scholar 

  15. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z (2011) Proc Natl Acad Sci U S A 108:16968–16973

    Article  CAS  Google Scholar 

  16. Shen JW, Wu T, Wang Q, Kang Y (2008) Biomaterials 29:3847–3855

    Article  CAS  Google Scholar 

  17. Mohammadi F, Sahihi M, Bordbar AK (2015) Spectrochim Acta A Mol Biomol Spectrosc 5:274–282

    Article  Google Scholar 

  18. Sahihi M, Ghayeb Y (2014) Comput Biol Med 51:44–50

    Article  CAS  Google Scholar 

  19. Kazemi Z, Amiri-Rudbari H, Sahihi M, Mirkhani V, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I, Gharaghani S (2016) J Photochem Photobiol B Biol 162:448–462

    Article  CAS  Google Scholar 

  20. Khosravi I, Hosseini F, Khorshidifard M, Sahihi M, Amiri-Rudbari H (2016) J Mol Struct 1119:373–384

    Article  CAS  Google Scholar 

  21. Gong X, Li J, Lu H, Wan R, Li J, Hu J, Fang H (2007) Nat Nanotechnol 2:709–712

    Article  CAS  Google Scholar 

  22. Hummer G, Rasaiah JC, Noworyta JP (2001) Nature 414:188–190

    Article  CAS  Google Scholar 

  23. Tu Y, Xiu P, Wan R, Hu J, Zhou R, Fang H (2009) Proc Natl Acad Sci U S A 106:18120–18124

    Article  CAS  Google Scholar 

  24. He Z, Zhou J (2014) Carbon 78:500–509

    Article  CAS  Google Scholar 

  25. Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG (2008) Proc Natl Acad Sci U S A 105:2274–2279

    Article  CAS  Google Scholar 

  26. Cui F, Qin L, Zhang G, Liu Q, Yao X, Lei B (2008) J Pharm Biomed Anal 48:1029–1036

    Article  CAS  Google Scholar 

  27. Lu Y, Cui F, Fan J, Yang Y, Yao X, Li J (2009) J Lumin 129:734–740

    Article  CAS  Google Scholar 

  28. McCallum MM, Pawlak AJ, Shadrick WR, Simeonov A, Jadhav A, Yasgar A, Maloney DJ, Arnold LA (2014) Anal Bioanal Chem 406:1867–1875

    Article  CAS  Google Scholar 

  29. Li F, Feterl M, Warner JM, Day AI, Keene FR, Collins JG (2013) Dalton Trans 42:8868–8877

    Article  CAS  Google Scholar 

  30. Domonkos C, Zsila F, Fitos I, Visy J, Kassai R, Balint B, Kotschy A (2015) RSC Adv 5:53809–53818

    Article  CAS  Google Scholar 

  31. Gou Y, Zhang Y, Qi J, Zhou Z, Yang F, Liang H (2015) J Inorg Biochem 144:47–55

    Article  CAS  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 16:2785–2791

    Article  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  34. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  35. Berendsen HJC, Vander Spoel D, Van Drunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  36. Lindah E, Hess B, Vander Spoel D (2001) J Mol Model 7:306–317

    Article  Google Scholar 

  37. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  38. Johnson ATC, Staii C, Chen M, Khamis S, Johnson R, Klein ML, Gelperin A (2006) Semiconduct Sci Technol 21:S17–S21

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  40. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  41. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  42. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10093

    Article  CAS  Google Scholar 

  43. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8582

    Article  CAS  Google Scholar 

  44. Carter DC, Ho JX (1994) Adv Protein Chem 45:153–203

    Article  CAS  Google Scholar 

  45. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) J Mol Biol 353:38–52

    Article  CAS  Google Scholar 

  46. Sudhamalla B, Gokara M, Ahalawat N, Amooru DG, Subramanyam R (2010) J Phys Chem B 114:9054–9062

    Article  CAS  Google Scholar 

  47. Kiselev MA, Gryzunov IA, Dobretsov GE, Komarova MN (2001) Biofizika 46:423–427

    CAS  Google Scholar 

  48. Fujiwara S, Amisaki T (2006) Proteins Struct Funct Bioinf 64:730–739

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Research Council of University of Isfahan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sahihi.

Electronic supplementary material

ESM 1

(DOCX 4691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahihi, M., Borhan, G. The effects of single-walled carbon nanotubes (SWCNTs) on the structure and function of human serum albumin (HSA): Molecular docking and molecular dynamics simulation studies. Struct Chem 28, 1815–1822 (2017). https://doi.org/10.1007/s11224-017-0963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0963-6

Keywords

Navigation