Structural Chemistry

, Volume 28, Issue 6, pp 1765–1773 | Cite as

Noncovalent interactions of free-base phthalocyanine with elongated fullerenes as carbon nanotube models

  • Eduardo Chávez-Colorado
  • Vladimir A. Basiuk
Original Research


Noncovalent interactions of free-base phthalocyanine (H2Pc) with closed-cap armchair (5,5) and zigzag (10,0) single-walled carbon nanotubes (ANT and ZNT, respectively), as well as, for comparison, with C60 and C80(I h) fullerenes, whose hemispheres were used to close the ends of nanotube models, were studied theoretically by using one pure dispersion-corrected GGA functional (PBE with a long-range dispersion correction by Grimme, or PBE+D) and two hybrid meta exchange-correlation functionals (M05-2X and M06-2X). Strong complexation was observed in all four systems studied. The general trend found is that the interaction strength increases with the size (number of C atoms) of carbon nanocluster, that is, in the order of ZNT > ANT > C80 > C60. Depending on the DFT functional employed, the interaction strength decreased in the order of PBE+D > M06-2X > M05-2X. A common feature for the geometry of all four complexes considered, reproduced in all the calculations, is that H2Pc macrocycle undergoes strong distortion, which allows for increasing its contact surface with the nanotube sidewall or spherical fullerene, and therefore makes π-π interactions more efficient.


Phthalocyanine Free-base Carbon nanotubes Fullerenes Noncovalent interactions Density functional theory 



Financial support from the National Autonomous University of Mexico (UNAM, grant DGAPA-IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. E. C.-C. thanks CONACYT and the Masters Degree Program in Physical Sciences of UNAM for a M.Sc. fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_955_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1610 kb)


  1. 1.
    Belosludov RV, Rhoda HM, Zhdanov RK, Belosludov VR, Kawazoe Y, Nemykin VN (2016) Conceptual design of tetraazaporphyrin and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities. Phys Chem Chem Phys 18:13503–13518CrossRefGoogle Scholar
  2. 2.
    Ray A, Santhosh K, Bhattacharya S (2015) Spectroscopic and structural insights on molecular assembly consisting high potential zinc phthalocyanine photosensitizer attached to PyC60 through non-covalent interaction. Spectrochim Acta A 135:386–397CrossRefGoogle Scholar
  3. 3.
    Ray A, Santhosh K, Bhattacharya S (2011) Absorption spectrophotometric, fluorescence, transient absorption and quantum chemical investigations on fullerene/phthalocyanine supramolecular complexes. Spectrochim Acta A 78:1364–1375CrossRefGoogle Scholar
  4. 4.
    Shalabi AS, Abdel Aal S, Assem MM, Soliman KA (2012) Metallophthalocyanine and metallophthalocyanine–fullerene complexes as potential dye sensitizers for solar cells DFT and TD-DFT calculations. Org Electronics 13:2063–2074CrossRefGoogle Scholar
  5. 5.
    Ren J, Meng S, Kaxiras E (2012) Theoretical investigation of the C60/copper phthalocyanine organic photovoltaic heterojunction. Nano Res 5:248–257CrossRefGoogle Scholar
  6. 6.
    Qi D, Zhang L, Wan L, Zhao L, Jiang J (2012) Design of a universal reversible bidirectional current switch based on the fullerene−phthalocyanine supramolecular system. J Phys Chem A 116:6785–6791CrossRefGoogle Scholar
  7. 7.
    Sai N, Gearba R, Dolocan A, Tritsch JR, Chan W-L, Chelikowsky JR, Leung K, Zhu X (2012) Understanding the interface dipole of copper phthalocyanine (CuPc)/C60: theory and experiment. J Phys Chem Lett 3:2173–2177CrossRefGoogle Scholar
  8. 8.
    Warner M, Mauthoor S, Felton S, Wu W, Gardener JA, Din S, Klose D, Morley GW, Stoneham AM, Fisher AJ, Aeppli G, Kay CWM, Heutz S (2012) Spin-based diagnostic of nanostructure in copper phthalocyanine C60 solar cell blends. ACS Nano 6:10808–10815CrossRefGoogle Scholar
  9. 9.
    Konarev DV, Troyanov SI, Kuzmin AV, Nakano Y, Khasanov SS, Otsuka A, Yamochi H, Saito G, Lyubovskaya RN (2015) Coordination complexes of pentamethylcyclopentadienyl iridium(III) diiodide with tin(II) phthalocyanine and pentamethylcyclopentadienyl iridium(II) halide with fullerene C60 anions. Organometallics 34:879–889CrossRefGoogle Scholar
  10. 10.
    Guo J-H, Zhang H, Miyamoto Y (2013) New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage. Phys Chem Chem Phys 15:8199–8207CrossRefGoogle Scholar
  11. 11.
    Ren J, Meng S, Wang Y-L, Ma XC, Xue Q-K, Kaxiras E (2011) Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J Chem Phys 134:194706 (1-11) CrossRefGoogle Scholar
  12. 12.
    Cai Y, Zhang H, Song J, Zhang Y, Bao S, He P (2015) Adsorption properties of CoPc molecule on epitaxial graphene/Ru(0 0 0 1). Appl Surf Sci 327:517–522CrossRefGoogle Scholar
  13. 13.
    Ohtsuka M, Kitamura F (2015) On the formal redox potential of oxygen reduction reaction at iron phthalocyanine/graphene composite electrode in alkaline media. Electrochemistry 83:376–380CrossRefGoogle Scholar
  14. 14.
    Smykalla L, Shukrynau P, Hietschold M (2012) Investigation of ultrathin layers of bis(phthalocyaninato)lutetium(III) on graphite. J Phys Chem C 116:8008–8013CrossRefGoogle Scholar
  15. 15.
    Järvinen P, Hämäläinen SK, Ijäs M, Harju A, Liljeroth P (2014) Self-assembly and orbital imaging of metal phthalocyanines on a graphene model surface. J Phys Chem C 118:13320–13325CrossRefGoogle Scholar
  16. 16.
    Park JH, Choudhury P, Kummel AC (2014) NO adsorption on copper phthalocyanine functionalized graphite. J Phys Chem C 118:10076–10082CrossRefGoogle Scholar
  17. 17.
    Lopes M, Candini A, Urdampilleta M, Reserbat-Plantey A, Bellini V, Klyatskaya S, Marty L, Ruben M, Affronte M, Wernsdorfer W, Bendiab N (2010) Surface-enhanced Raman signal for terbium single-molecule magnets grafted on graphene. ACS Nano 4:7531–7537CrossRefGoogle Scholar
  18. 18.
    Bottari G, de la Torre G, Guldi DM, Torres T (2010) Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem Rev 110:6768–6816CrossRefGoogle Scholar
  19. 19.
    Orellana W (2012) Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: a theoretical study. Chem Phys Lett 541:81–84CrossRefGoogle Scholar
  20. 20.
    Zhu J, Jia N, Yang L, Su D, Park J, Choi YM, Gong K (2014) Heterojunction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). J Coll Interface Sci 419:61–67CrossRefGoogle Scholar
  21. 21.
    Bartelmess J, Ballesteros B, de la Torre G, Kiessling D, Campidelli S, Prato M, Torres T, Guldi DM (2010) Phthalocyanine−pyrene conjugates: a powerful approach toward carbon nanotube solar cells. J Am Chem Soc 132:16202–16211CrossRefGoogle Scholar
  22. 22.
    Correa JD, Orellana W (2012) Optical response of carbon nanotubes functionalized with (free-base, Zn) porphyrins, and phthalocyanines: a DFT study. Phys Rev B 86:125417 (1-6) CrossRefGoogle Scholar
  23. 23.
    Lozzi L, Santucci S, Bussolotti F, La Rosa S (2008) Investigation on copper phthalocyanine/multiwalled carbon nanotube interface. J Appl Phys 104:033701 (1-5) CrossRefGoogle Scholar
  24. 24.
    Xu Z, Li H, Sun H, Zhang Q, Li K (2010) Carbon nanotubes with phthalocyanine-decorated surface produced by NH3-assisted microwave reaction and their catalytic performance in Li/SOCl2 battery. Chin J Chem 28:2059–2066CrossRefGoogle Scholar
  25. 25.
    Schulte K, Swarbrick JC, Smith NA, Bondino F, Magnano E, Khlobystov AN (2007) Assembly of cobalt phthalocyanine stacks inside carbon nanotubes. Adv Mater 19:3312–3316CrossRefGoogle Scholar
  26. 26.
    Schulte K, Yan C, Ahola-Tuomi M, Stróżecka A, Moriarty PJ, Khlobystov AN (2008) Encapsulation of cobalt phthalocyanine molecules in carbon nanotubes. J Phys Conf Ser 100:012017 (1-4) CrossRefGoogle Scholar
  27. 27.
    Cao L, Chen H-Z, Zhou H-B, Zhu L, Sun J-Z, Zhang X-B, Xu J-M, Wang M (2003) Carbon-nanotube-templated assembly of rare-earth phthalocyanine nanowires. Adv Mater 15:909–913CrossRefGoogle Scholar
  28. 28.
    Campidelli S, Ballesteros B, Filoramo A, Díaz D, de la Torre G, Torres T, Rahman GMA, Ehli C, Kiessling D, Werner F, Sgobba V, Guldi DM, Cioffi C, Prato M, Bourgoin JP (2008) Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”. J Am Chem Soc 130:11503–11509CrossRefGoogle Scholar
  29. 29.
    Agboola BO, Mocheko A, Pillay J, Ozoemena KI (2008) Nanostructured cobalt phthalocyanine single-walled carbon nanotube platform: electron transport and electrocatalytic activity on epinephrine. J Porphyrins Phthalocyanines 12:1289–1299CrossRefGoogle Scholar
  30. 30.
    Akinbulu IA, Nyokong T (2010) Fabrication and characterization of single walled carbon nanotubes-iron phthalocyanine nano-composite: surface properties and electron transport dynamics of its self assembled monolayer film. New J Chem 34:2875–2886CrossRefGoogle Scholar
  31. 31.
    Li H, Xu Z, Li K, Hou X, Cao G, Zhang Q, Cao Z (2011) Modification of multi-walled carbon nanotubes with cobalt phthalocyanine: effects of the templates on the assemblies. J Mater Chem 21:1181–1186CrossRefGoogle Scholar
  32. 32.
    Wang Y, Hu N, Zhou Z, Xu D, Wang Z, Yang Z, Wei H, Kong ES-W, Zhang Y (2011) Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: preparation, characterization and its gas sensing properties. J Mater Chem 21:3779–3787CrossRefGoogle Scholar
  33. 33.
    Sandanayaka ASD, Subbaiyan NK, Das SK, Chitta R, Maligaspe E, Hasobe T, Ito O, D’Souza F (2011) Diameter-sorted SWCNT–porphyrin and SWCNT–phthalocyanine conjugates for light-energy harvesting. Chem Phys Chem 12:2266–2273CrossRefGoogle Scholar
  34. 34.
    Dong G, Huang M, Guan L (2012) Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys Chem Chem Phys 14:2557–2559CrossRefGoogle Scholar
  35. 35.
    Wang Z, Yang X, Wei J, Xu M, Tong L, Zhao R, Liu X (2012) Morphological, electrical, thermal and mechanical properties of phthalocyanine/multi-wall carbon nanotubes nanocomposites prepared by masterbatch dilution. J Polym Res 19:9969 (1-8) CrossRefGoogle Scholar
  36. 36.
    Chen F, Li K, Li H (2013) Catalytic activity of tetranitro-copper phthalocyanine supported on carbon nanotubes towards oxygen reduction reaction. Adv Mater Res 706-708:15–19CrossRefGoogle Scholar
  37. 37.
    Jha A, Ghorai UK, Banerjee D, Mukherjee S, Chattopadhyay KK (2013) Surface modification of amorphous carbon nanotubes with copper phthalocyanine leading to enhanced field emission. RSC Adv 3:1227–1234CrossRefGoogle Scholar
  38. 38.
    Zhang L, Yu H, Liu L, Wang L (2014) Study on the preparation of multi-walled carbon nanotube/phthalocyanine composites and their optical limiting effects. J Composite Mater 48:959–967CrossRefGoogle Scholar
  39. 39.
    Jha P, Sharma M, Chouksey A, Chaturvedi P, Kumar D, Upadhyaya G, Rawat JSBS, Chaudhury PK (2014) Functionalization of carbon nanotubes with metal phthalocyanine for selective gas sensing application. Synth React Inorg, Met-Org, Nano-Met Chem 44:1551–1557CrossRefGoogle Scholar
  40. 40.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nature Mater 7:179–186CrossRefGoogle Scholar
  41. 41.
    Urdampilleta M, Klyatskaya S, Cleuziou JP, Ruben M, Wernsdorfer W (2011) Supramolecular spin valves. Nature Mater 10:502–506CrossRefGoogle Scholar
  42. 42.
    Amelines-Sarria O, Basiuk VA, Duarte-Alaniz V, Rivera M (2015) Properties of noncovalent tetraphenylporphine...C60 dyad as studied by different long-range and dispersion-corrected DFT functionals. Phys Chem Chem Phys 17:27399–27408CrossRefGoogle Scholar
  43. 43.
    Henao-Holguín LV, Basiuk VA (2015) Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes. J Mol Model 21:146 (1-11) CrossRefGoogle Scholar
  44. 44.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRefGoogle Scholar
  45. 45.
    Delley B (1996) Fast calculations of electrostatics in crystals and large molecules. J Phys Chem 100:6107–6110CrossRefGoogle Scholar
  46. 46.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  47. 47.
    Delley B, Ellis DE, Freeman AJ, Baerends EJ, Post D (1983) Binding energy and electronic structure of small copper particles. Phys Rev B 27:2132–2144CrossRefGoogle Scholar
  48. 48.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  49. 49.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  50. 50.
    Basiuk VA, Henao-Holguín LV (2014) Dispersion-corrected density functional theory calculations of meso-tetraphenylporphine-C60 complex by using DMol3 module. J Comput Theor Nanosci 11:1609–1615CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Publisher: Gaussian, Inc., Wallingford CTGoogle Scholar
  52. 52.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  53. 53.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  54. 54.
    Fowler PW, Curl RF, Murrell JN (1993) Systematics of fullerenes and related clusters [and discussion]. Phil Trans R Soc London A 343:39–52CrossRefGoogle Scholar
  55. 55.
    Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon Press, OxfordGoogle Scholar
  56. 56.
    Khamatgalimov AR, Kovalenko VI (2011) Electronic structure and stability of C-80 fullerene IPR isomers. Fullerenes Nanotubes Carbon Nanostruct 19:599–604CrossRefGoogle Scholar
  57. 57.
    Furche F, Ahlrichs R (2001) Fullerene C-80: are there still more isomers? J Chem Phys 114:10362–10367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations