Advertisement

Structural Chemistry

, Volume 28, Issue 6, pp 1757–1764 | Cite as

In silico studies of the magnetic octahedral B6 cluster—nitric oxide and [B6 –NO]–O2 interactions

  • E. Chigo-Anota
  • M. Salazar Villanueva
  • S. Valdez
  • M. Castro
Original Research

Abstract

All-electron calculations based on density functional theory (DFT) for B6 , [B6–NO], and [B6–NO–O2] were done in gas and aqueous phases, in order to validate their feasibility as nanovehicle for drug delivery. The quantum descriptors reveal that the octahedral B6 cluster shows semiconductor and magnetic behavior, low chemical reactivity, and zero polarity. On the other hand, bonding of the NO molecule with the B6 cluster produces a complex where the physic-chemical properties do not suffer drastic alterations, except that the polarity increases and a reduction of the work function takes place. These results suggest that the new [B6–NO] cluster can be applied for some biological function. Furthermore, the interaction between [B6–NO] and O2 generates a geometric transition from octahedron to pentagonal bipyramid, where the NO molecule remains bonded and the O2 molecule is activated in such superoxide cluster.

Keywords

Octahedral B6 cluster Electronic properties Magnetic properties Work function DFT 

Notes

Acknowledgments

This work was partially supported by projects: VIEP-BUAP (CHAE-ING17-G) and Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177). We thank the support given by the National Laboratory Supercomputing Southeast housed in the BUAP. M. Castro acknowledges financial support provided by DGAPA-UNAM, Project PAPIIT IN-212315, and from Facultad de Química, UNAM, under the PAIP-FQ program.

Supplementary material

11224_2017_953_MOESM1_ESM.doc (5.7 mb)
ESM 1 (DOC 5835 kb)

References

  1. 1.
    Grimes RN (2004) J Chem Edu 81:657CrossRefGoogle Scholar
  2. 2.
    Drummond ML, Meunier V, Sumpter BG (2007) J Phys Chem A 111:6539CrossRefGoogle Scholar
  3. 3.
    Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyre AI (2014) Acc Chem Res 47:1349CrossRefGoogle Scholar
  4. 4.
    Hayami W, Shigeki Otani S (2011) J Phys Chem A 115:8204CrossRefGoogle Scholar
  5. 5.
    ĎorĎovič V, Tošner Z, Uchman M, Zhigunov A, Reza M, Ruokolainen J, Pramanik G, Cígler P, Kalíková K, Gradzielski M, Matějíček P (2016) Langmuir 32:6713CrossRefGoogle Scholar
  6. 6.
    Stoddart A (2014) Nature Chem 6:727Google Scholar
  7. 7.
    Mukherjee S, Thilagar P (2016) Chem Commun 52:1070CrossRefGoogle Scholar
  8. 8.
    Hosmane, N. S. Boron Science. New Technologies and Applications. CRC Press, Francis & Taylor Group 2012.Google Scholar
  9. 9.
    Koshland Jr DE (1992) Science:258–1861Google Scholar
  10. 10.
    Mohadger Y, Roller MB, Gillham JK (1973) J Appl Polym Sci 17:2635CrossRefGoogle Scholar
  11. 11.
    Aihara J (1978) J Am Chem Soc 100:3339CrossRefGoogle Scholar
  12. 12.
    Greatrex R, Greenwood NN, Millikan MB (1988) J Chem Soc Dalton Trans:2335Google Scholar
  13. 13.
    Zdetsis AD (2008) Inorg Chem 47:8823CrossRefGoogle Scholar
  14. 14.
    Schwoch D, Don B, Burg AB, Beaudet IA (1979) J Phys Chem 83:1465CrossRefGoogle Scholar
  15. 15.
    Mckee ML (1989) J Phys Chem 93:3426CrossRefGoogle Scholar
  16. 16.
    Tian SX (2005) J Phys Chem A 109:6580CrossRefGoogle Scholar
  17. 17.
    Minyaev RM, Minkin VI, Gribanova TN, Starikov AG (2004) Russ Chem Bull, Int Edition 53:1159CrossRefGoogle Scholar
  18. 18.
    Hanley L, Anderson SL (1987) J Phys Chem 91:5161CrossRefGoogle Scholar
  19. 19.
    Hanley L, Whitten JL, Anderson SL (1988) J Phys Chem 92:5803CrossRefGoogle Scholar
  20. 20.
    Ray AK, Howard IA, Kanal KM (1992) Phys Rev B 45:–14247Google Scholar
  21. 21.
    Kato H, Yamashita K, Morokuma K (1992) Chem Phys Lett 190:361CrossRefGoogle Scholar
  22. 22.
    Niu J, Rao BK, Jena P (1997) J Chem Phys 107:132CrossRefGoogle Scholar
  23. 23.
    Bonacic-Koutecky V, Fantucci P, Koutecky J (1991) Chem Rev 91:1035CrossRefGoogle Scholar
  24. 24.
    Garcia-Molina R, Heredia-Avalos S, Abril I (2000) J Phys Condens Matter 12:5519CrossRefGoogle Scholar
  25. 25.
    Boustani I (1994) Int J Quant Chem 52:1081CrossRefGoogle Scholar
  26. 26.
    Ricca A, Bauschlicher Jr CW (1997) J Chem Phys 106:2317CrossRefGoogle Scholar
  27. 27.
    Ricca A, Bauschlicher Jr CW (1996) Chem Phys:208–233Google Scholar
  28. 28.
    Gillery C, Linguerri R, Rosmus P, Maier JP (2005) J Phys Chem 219:467Google Scholar
  29. 29.
    Li QS, Jin HW (2002) J Phys Chem A 106:7042CrossRefGoogle Scholar
  30. 30.
    Li QS, Jin Q, Luo Q, Tang AC, Yu JK, Zhang HX (2003) Int. J. Quant. Chem 94:269CrossRefGoogle Scholar
  31. 31.
    Ma J, Li Z, Fan K, Zhou M (2003) Chem Phys Lett 372:708CrossRefGoogle Scholar
  32. 32.
    Kawai R, Weare JH (1992) Chem Phys Lett 191:311CrossRefGoogle Scholar
  33. 33.
    Gu FL, Yang X, Tang AC, Jiao HJ, Schleyer PVR (1998) J Comput Chem 19:203CrossRefGoogle Scholar
  34. 34.
    Fowler JE, Ugalde JM (2000) J Phys Chem A 104:397CrossRefGoogle Scholar
  35. 35.
    Ba Tai T, Minh Tm N, Tho Nguyen M (2012) Theor Chem Accounts 131:1241Google Scholar
  36. 36.
    Shinde R, Shukla A (2013) Eur Phys J D 67:98CrossRefGoogle Scholar
  37. 37.
    Butler AR, Wiliams DL (1993) Chem Soc Rev 22:233CrossRefGoogle Scholar
  38. 38.
    Moncada S, Palmer RMJ, Higgs EA (1991) Pharmacol Rev 43:109Google Scholar
  39. 39.
    Calver A, Collier J, Vallance P (1992) J Clin Invest 90(6):2548CrossRefGoogle Scholar
  40. 40.
    Durante W, Sen AK, Sunahara FA (1988) Br J Pharmacol 94:463CrossRefGoogle Scholar
  41. 41.
    Rees DD, Cellek S, Palmer RMJ, Moncada S (1990) BiochemBiophys Res Commun 173:541Google Scholar
  42. 42.
    Radi R, Beckman JS, Bush KM, Freeman BA (1991) Arch Biochem Biophys 288:481CrossRefGoogle Scholar
  43. 43.
    Tsuneda, T. Density functional theory in quantum chemistry. Springer: Japan, 2014.Google Scholar
  44. 44.
    Gaussian 09, Revision C.01,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowskiand D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.Google Scholar
  45. 45.
    Heyd J, Scuseria G (2004) J Chem Phys 121:1187CrossRefGoogle Scholar
  46. 46.
    Heyd J, Scuseria GE (2004) J Chem Phys 120:7274CrossRefGoogle Scholar
  47. 47.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  48. 48.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  49. 49.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefGoogle Scholar
  50. 50.
    Lu, H.; Liu, Z.; Yan, X.; Li, D.; Parent, L.; Tian, H. Sci. Rep. 2016, 6, 24366(1)–(11)Google Scholar
  51. 51.
    Scrocco E, Tomasi J (1973) Top Curent Chem 42:95–170Google Scholar
  52. 52.
    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215CrossRefGoogle Scholar
  53. 53.
    de Mel A, Murad F, Seifalian AM (2011) Chem Rev 111:5742CrossRefGoogle Scholar
  54. 54.
    Li S. S. Semiconductor Physical Electronics, 2006, Second ed., Springer, USAGoogle Scholar
  55. 55.
    Ati M, Özdogan C, Güven ZB (2007) Int J Quantum Chem 107:729CrossRefGoogle Scholar
  56. 56.
    Nguyen TQ, Sison Escaño MC, Kasai H (2010) J Phys Chem B 114:10017CrossRefGoogle Scholar
  57. 57.
    Chigo Anota E, Escobedo Morales A, Hernández Cocoletzi H, López y López JG (2015) Phys E 74:538Google Scholar
  58. 58.
    Chigo Anota E, Cortes Arriagada D, Bautista Hernández A, Castro M (2017) Appl Surf Sci 400:283CrossRefGoogle Scholar
  59. 59.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería QuímicaCiudad UniversitariaPueblaMexico
  2. 2.Facultad de IngenieríaBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  4. 4.Universidad Nacional Autónoma de México-Departamento de Física y Química Teórica, DEPg-Facultad de QuímicaMexico CityMexico

Personalised recommendations