Structural Chemistry

, Volume 28, Issue 6, pp 1743–1756 | Cite as

DFT studies on the acid-catalyzed Curtius reaction: the Schmidt reaction

Original Research
  • 139 Downloads

Abstract

The Schmidt reaction is the acid-catalyzed analogue of the Curtius reaction and is extensively used in organic synthesis. In this work, the mechanism of this reaction has been explored using DFT calculations at the B3LYP/6-311+G(d,p) level. Protonated formyl azide may undergo rearrangement to the product, protonated isocyanic acid, with simultaneous extrusion of molecular nitrogen (concerted mechanism), or undergo rearrangement to the anti conformer, followed by removal of nitrogen to form the nitrenium ion, which then rearranges to the final product, protonated isocyanic acid (step-wise mechanism). Like the Curtius reaction, it is found that the concerted pathway is definitely preferred. The key role of acidification in decreasing the overall energy barrier is more highlighted in case of phenyl substitution, with negligible effect on the lower homologues. For methoxy and amine substituents, there is very little difference in the activation energies of the concerted and step-wise reactions, with the former being still slightly preferred. Unlike the parent compound, the rearrangement of substituted nitrenium ion in some cases involves side reactions like C-H insertion and cyclization.

Keywords

Schmidt rearrangement Nitrenium ion Concerted Step-wise DFT Substituent effects 

Notes

Acknowledgements

The authors thank the University of Delhi’s “Scheme to Strengthen Doctoral Research by Providing Funds to Faculty.” One of the authors (RA) thanks the University Grants Commission (UGC) for a Senior Research Fellowship.

Compliance with ethical standards

Ethical statement

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_952_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1082 kb)

References

  1. 1.
    RA Abramovich, and P Kyba (1971) In: The chemistry of the azido group, S. Patai (Ed.); John Wiley and Sons, London, pp. 221–329Google Scholar
  2. 2.
    PE Kyba (1984) In: Azides and nitrenes: reactivity and utility. E. F. V. Scriven (Ed.); Academic, Orlando, 2et seqGoogle Scholar
  3. 3.
    Lang S, Murphy JA (2006) Chem Soc Rev 35:146–156CrossRefGoogle Scholar
  4. 4.
    Schmidt RF (1924) Ber 57:704Google Scholar
  5. 5.
    PAS Smith (1963) In: Molecular rearrangements. P. de Mayo (Ed.); Interscience: New York, 507–558Google Scholar
  6. 6.
    Wolff H (1946) Org Reactions 3:307–336Google Scholar
  7. 7.
    T. Laue, and A. Plagens, In: Named organic reactions, 2nd edition; John Wiley and Sons: Chichester, p. 320 (2005)Google Scholar
  8. 8.
    Zabalov MV, Tiger RP (2010) J Mol Struc-Theochem 962:15–22CrossRefGoogle Scholar
  9. 9.
    Zabalov MV, Tiger RP (2012) Russ Chem Bull 61:1694–1704CrossRefGoogle Scholar
  10. 10.
    Chaturvedi D, Chaturvedi AK, Mishra N, Mishra V (2012) Org Biomol Chem 10:9148–9151CrossRefGoogle Scholar
  11. 11.
    S Grecian, and J Aubé (2010) In: Organic azides: syntheses and applications. S. Bräse, and K. Banert (Eds.); John Wiley and Sons, Ltd. New York, p. 192–310Google Scholar
  12. 12.
    Lee HL, Aube J (2007) Tetrahedron 63:9007–9015CrossRefGoogle Scholar
  13. 13.
    Gutierrez O, Aubé J, Tantillo DJ, Org J (2012) Chem. 77:640–647Google Scholar
  14. 14.
    Curtius T (1890) Ber Dtsch Chem Ges 23:3023–3033CrossRefGoogle Scholar
  15. 15.
    Curtius T, Prakt J (1894) Chem. 50:275–294Google Scholar
  16. 16.
    Yukawa Y, Tsuno Y (1959) Bull Chem Soc Jpn 32:971–981CrossRefGoogle Scholar
  17. 17.
    Lewis FD, Saunders Jr WH (1967) J Am Chem Soc 89:645–647CrossRefGoogle Scholar
  18. 18.
    Newman MS, Gildenhorn HL, Am J (1948) Chem Soc 70:317–319CrossRefGoogle Scholar
  19. 19.
    Yukawa Y, Tsuno Y, Am J (1958) Chem Soc 80:6346–6350CrossRefGoogle Scholar
  20. 20.
    Abu-Eittah RH, Moustafa H, Al-Omar AM (2000) Chem Phys Lett 318:276–288CrossRefGoogle Scholar
  21. 21.
    Gritsan NP, Pritchina EA (2001) Mendeleev Commun 11:94–96CrossRefGoogle Scholar
  22. 22.
    Pritchina EA, Gritsan NP, Maltsev A, Bally T, Autrey T, Liu Y, Wang Y, Toscano JP (2003) Phys Chem Chem Phys 5:1010–1018CrossRefGoogle Scholar
  23. 23.
    V. I. Faustov, E. G. Baskir, and A. A. Biryukov, Russ. Chem. Bull. Int. Ed., 52, 2328–2333 (2003). (published also in Russian in Izv. Akad. Nauk., Ser. Kimicheskaya 11, 2203 (2003))Google Scholar
  24. 24.
    Liu J, Mandel S, Hadad CM, Platz MS, Org J (2004) Chem 69:8583–8593Google Scholar
  25. 25.
    Mandel S, Liu J, Hadad CM, Platz MS, Phys J (2005) Chem. A 109:2816–2821Google Scholar
  26. 26.
    Zabalov MV, Tiger RP (2005) Russ. Chem. Bull. Int. Ed. 54:2270–2280CrossRefGoogle Scholar
  27. 27.
    Zabalov MV, Tiger RP (2007) Russ Chem Bull Int Ed 56:7–13CrossRefGoogle Scholar
  28. 28.
    Kakkar R, Zaidi S, Grover R (2009) Int J Quantum Chem 109:1058–1069CrossRefGoogle Scholar
  29. 29.
    Becke AD, Chem J (1988) Phys 88:2547–2553Google Scholar
  30. 30.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  32. 32.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  33. 33.
    Kohli E, Arora R, Kakkar R (2014) Can Chem Trans 2:327–342CrossRefGoogle Scholar
  34. 34.
    ED Glendening AE Reed, JE Carpenter, and F Weinhold (2003) NBO version 3.1, Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  35. 35.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. Fox (2009) Gaussian, Inc.: Wallingford, CTGoogle Scholar
  36. 36.
    Marenich AV, Cramer CJ, Truhlar DG, Phys J (2009) Chem B 113:6378–6396CrossRefGoogle Scholar
  37. 37.
    Saielli G, Phys J (2010) Chem A 114:7261–7265Google Scholar
  38. 38.
    Kiplinger JP, Maynard AT, Bursey MM (1987) Org Mass Spectrom 22:534–540CrossRefGoogle Scholar
  39. 39.
    Ijjaali F, Alcamí M, Mó O, Yáñez M (2001) Mol Phys 99:1129–1137CrossRefGoogle Scholar
  40. 40.
    L. G. Wade Jr. (2009) In: Organic chemistry (7th edition); Prentice Hall, p. 183Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Computational Chemistry Group, Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations