Structural Chemistry

, Volume 28, Issue 6, pp 1731–1742 | Cite as

Effect of halogen bonding on supramolecular assembly and photophysical properties of diaryl oxalates

  • Dong-En Wu
  • Yang-Hui Luo
  • Man-Ning Wang
  • Qing-Ling Liu
  • Gao-Ju Wen
  • Ling-Jun Zhu
  • Chang-Po Fan
  • Bai-Wang Sun
Original Research

Abstract

In order to determine the effect of halogen bonding on supramolecular assemblies and photophysical properties of diaryl oxalates, diaryl oxalate itself and its derivatives with fluorine, chlorine, bromine, and iodine substituents in the p-position of phenyl rings were studied and compared. Their single-crystal structures were studied by geometrical analysis and theoretical calculation. The study reveals that different halogen bonds are formed with respect to different halogen atoms, such as C…F and X…X (bromine and iodine atoms) interactions, and molecular stacking modes would be affected by halogen bonds directly. Comparative studies of photophysical properties in dilute solution and solid state indicate that halogen substitutions would not affect the emission processes of diaryl oxalates in dilute solution; this is not the case for their solid state. This work has demonstrated that halogen bonds play an important role in regulating structures and photophysical properties of diaryl oxalates.

Keywords

Halogen bonding Supramolecular assembly Photophysical properties 

Notes

Acknowledgements

We would like to thank the National Nature Science Foundation of China (Project 21371031) and International S&T Cooperation Program of China (2015DFG42240).

Supplementary material

11224_2017_950_MOESM1_ESM.doc (4.1 mb)
ESM 1 (DOC 4156 kb)

References

  1. 1.
    Cook TR, Zheng YR, Stang PJ (2013) Chem Rev 113:734–777CrossRefGoogle Scholar
  2. 2.
    Mondal SS, Bhunia A, Kelling A, Schilde U, Schilde C, Janiak C, Holdt HJ (2014) J Am Chem Soc 136:44–47CrossRefGoogle Scholar
  3. 3.
    Chakrabarty R, Mukherjee PS, Stang PJ (2011) Chem Rev 111:6810–6918CrossRefGoogle Scholar
  4. 4.
    Bibal B, Mongin C, Bassani DM (2014) Chem Soc Rev 43:4179–4198CrossRefGoogle Scholar
  5. 5.
    Wang L, Zhao L, Xu LY, Chen RX, Yang Y (2012) Cryst EngComm 14:6998–7008CrossRefGoogle Scholar
  6. 6.
    Wang L, Zhao L, Hu YJ, Wang WQ, Chen RX, Yang Y (2013) Cryst EngComm 15:2835–2852CrossRefGoogle Scholar
  7. 7.
    Perumalla SR, Pedireddi VR, Sun CC (2013) Mol Pharm 10:2462–2466CrossRefGoogle Scholar
  8. 8.
    Chakraborty S, Rajput L, Desiraju GR (2014) Cryst Growth Des:14, 2571–2577Google Scholar
  9. 9.
    Long SH, Zhou PP, Parkin S, Li TL (2014) Cryst Growth Des 14:27–31CrossRefGoogle Scholar
  10. 10.
    Wang L, Hu Y, Wang W, Liu F, Huang K (2014) Cryst EngComm 16:4142–4161CrossRefGoogle Scholar
  11. 11.
    Ding XH, Cui LF, Li YH, Wang S, Huang W (2012) New J Chem 36:1884–1890CrossRefGoogle Scholar
  12. 12.
    Albrecht M, Müller M, Valkonen A, Rissanen K (2010) Cryst EngComm 12:3698–3702CrossRefGoogle Scholar
  13. 13.
    Pérez-Torralba M, Ángeles García M, López C, Torralba MC, Torres MR, Claramunt RM, Elguero J (2014) Cryst Growth Des:14, 3499–3509Google Scholar
  14. 14.
    Nandi G, Titi HM, Goldberg I (2014) Cryst Growth Des:14, 3557–3566Google Scholar
  15. 15.
    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116:2478–2601CrossRefGoogle Scholar
  16. 16.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 85:1711–1713CrossRefGoogle Scholar
  17. 17.
    Berger G, Soubhye J, Meyer F (2015) Poly Chem 6:3559–3580CrossRefGoogle Scholar
  18. 18.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  19. 19.
    Metrangolo P, Resnati G (2008) Science 321:918–919CrossRefGoogle Scholar
  20. 20.
    Mukherjee A, Tothadi S, Desiraju GR (2014) Acc Chem Res 47:2514–2524CrossRefGoogle Scholar
  21. 21.
    Huan G, Xu T, Momen RR, Wang LL, Ping Y, Kirk SR, Jenkins S, Mourik TV (2016) Chem Phys Lett 662:67–72CrossRefGoogle Scholar
  22. 22.
    Shukla R, Chopra D (2015) Cryst EngComm 17:3596–3607CrossRefGoogle Scholar
  23. 23.
    Wang S, Ding XH, Li YH, Huang W (2015) J Mol Struct:98–108Google Scholar
  24. 24.
    Hu YJ, Li ZQ, Zhao YR, Yang Y, Liu FQ, Wang L (2015) RSC Adv 5:10275–10289CrossRefGoogle Scholar
  25. 25.
    Zha B, Dong MQ, Miao XR, Peng S, Wu YC, Miao K, Hu Y, Deng WL (2017) Nano 9:237–250Google Scholar
  26. 26.
    Omorodion H, Twamley B, Platts JA, Baker RJ (2015) Cryst Growth Des 15:2835–2841CrossRefGoogle Scholar
  27. 27.
    Hathwar VR, Guru Row TN (2011) Cryst Growth Des 11:1338–1346CrossRefGoogle Scholar
  28. 28.
    Brinck T, Carlqvist P, Stenlid JH (2016) J Phys Chem A:10023–10032Google Scholar
  29. 29.
    Rezac J, de la Lande A (2017) Phys Chem Chem Phys 19:791–803CrossRefGoogle Scholar
  30. 30.
    Bauzá A, Frontera A (2016) Chem Phys Chem 17:3181–3186CrossRefGoogle Scholar
  31. 31.
    Garcia-Campana AM (2001) In: Baeyens WRG (ed) Chemiluminescence in analytical chemistry. Marcel Dekker, New YorkGoogle Scholar
  32. 32.
    Campbell AK (1988) Chemiluminescence: principles and applications in biology and medicine chemiluminescence. Weinheim, ChichesterGoogle Scholar
  33. 33.
    Kazemi SY, Abedirad SM (2014) Spectrochim Acta A Mol Biomol Spectrosc 118:782–786CrossRefGoogle Scholar
  34. 34.
    Chandross EA (1963) Tetrahedron Lett 12:761–765Google Scholar
  35. 35.
    Schuster GB (1979) Acc Chem Res 12:366–373CrossRefGoogle Scholar
  36. 36.
    Wilson T (1995) Photochem Photobiol 62:601–606CrossRefGoogle Scholar
  37. 37.
    Maruyama T, Narita S, Motoyoshiya J (2013) Spectrochim Acta A Mol Biomol Spectrosc 252:222–231Google Scholar
  38. 38.
    Lahti PM, Modarelli DA, Inceli A (1994) Acta Cryst C 50:1308–1312CrossRefGoogle Scholar
  39. 39.
    Zeng XR, Zhang Y, You XZ (2001) Acta Phys-Chem Sin 17(4):361–363Google Scholar
  40. 40.
    Rigaku (2005) Crystal clear, version 14.0. Rigaku corporation, TokyoGoogle Scholar
  41. 41.
    Sheldrick GM (2015) Acta Crystallogr C71:3Google Scholar
  42. 42.
    Pedireddy VR, Reddy DS, Goud BS, Craig DC, Rae AD, Desiraju GR (1994) J Chem Soc Perkin Trans 2:2353–2360CrossRefGoogle Scholar
  43. 43.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Crystallogr Sect B: Struct Sci 60:627–668CrossRefGoogle Scholar
  44. 44.
    Spackman MA, McKinnon JJ (2002) Cryst EngComm 4:378–392CrossRefGoogle Scholar
  45. 45.
    Ramasubbu N, Parthasarathy R, Murray-Rust PJ (2014) J Am Chem 38:723–729Google Scholar
  46. 46.
    Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal explorer 3.0. University of Western Australia, PerthGoogle Scholar
  47. 47.
    Khavasi HR, Ghanbarpour A, Tehrani AA (2016) RSC Adv 6:2422CrossRefGoogle Scholar
  48. 48.
    Chakraborty S, Rajput L, Desiraju GR (2014) Cryst Growth Des 14(5):2571–2577Google Scholar
  49. 49.
    Hauchecorne D, Herrebout WA (2013) J Phys Chem A 117:11548–11557CrossRefGoogle Scholar
  50. 50.
    Hathwar VR, Roopan SM, Subashini R, Khan FN, Row TNG (2010) J Chem Sci 122:677–685CrossRefGoogle Scholar
  51. 51.
    Johansson MP, Swart M (2013) Phys Chem Chem Phys 15:11543–11553CrossRefGoogle Scholar
  52. 52.
    Dong YJ, Xu B, Zhang JB, Lu HG, Wen SP, Chen FP, He JT, Li B, Ye L, Tian WJ (2012) Cryst Eng Comm 14:6593–6598CrossRefGoogle Scholar
  53. 53.
    Wang YL, Liu TL, Bu LY, Li JF, Yang C, Li XJ, Tao Y, Yang WJ (2012) J Phys Chem C 116:15576–15583CrossRefGoogle Scholar
  54. 54.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakia H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Polemia C, Ochtersji JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Revision A.1. Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  55. 55.
    Gadde S, Batchelor EK, Weiss JP, Ling YH, Kaifer AE (2008) J Am Chem Soc 130:17114–17119CrossRefGoogle Scholar
  56. 56.
    Yang JH, Chen YM, Ren YL, Bai YB, Wu Y, Jiang YS, Su ZM, Yang WS, Wang YQ, Zao B, Li TJ (2000) J Photochem Photobiol A Chem 134:1–7CrossRefGoogle Scholar
  57. 57.
    Miyata A, Uunma Y, Higashigaki Y (1991) Bull Chem Soc Jpn 64(6):2786–2791Google Scholar
  58. 58.
    He J, Xu B, Chen F, Xia H, Li K, Ye L, Tian WJ (2009) J Phys Chem C 113:9892–9899CrossRefGoogle Scholar
  59. 59.
    Xu B, Fang H, Dong Y, Chen F, Chen Q, Sun H, Tian WJ (2010) New J Chem 34:1838–1842CrossRefGoogle Scholar
  60. 60.
    Matsumoto M, Nakazawa T, Azumi R, Tachibana H, Yamanaka Y, Sakai H, Abe M (2002) J Phys Chem B 106(44):11487–11491CrossRefGoogle Scholar
  61. 61.
    Ikegami K, Kuroda S (2003) Chem Phys 295:205–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dong-En Wu
    • 1
  • Yang-Hui Luo
    • 1
  • Man-Ning Wang
    • 1
  • Qing-Ling Liu
    • 1
  • Gao-Ju Wen
    • 1
  • Ling-Jun Zhu
    • 1
  • Chang-Po Fan
    • 2
  • Bai-Wang Sun
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.College of Cheng-xianSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations