Advertisement

Structural Chemistry

, Volume 28, Issue 6, pp 1717–1722 | Cite as

A theoretical study on the hydrogen storage properties of planar (AlN)n clusters (n = 3-5)

Original Research
  • 193 Downloads

Abstract

The structures and hydrogen storage capacities of (AlN)n (n = 3-5) clusters have been systematically investigated by using density functional theoretical calculations. At ωB97xD/6-311 + G(d, p) level, the planar structures of (AlN)n (n = 3-5) can adsorb 6-10 H2 molecules with average adsorption energies in the range 0.16 to 0.11 eV/H2, which meet the adsorption energy criteria of reversible hydrogen storage. The gravimetric density of H2 adsorbed on (AlN)n clusters can reach 8.96 wt%, which exceed the target set by Department of Energy. The hydrogen adsorption energies with Gibbs free energy correction indicate that the adsorption of 6 H2 in (AlN)3, 8 H2 in (AlN)4 and 10 H2 in (AlN)5 is energetically favorable below 96.48, 61.43, and 34.21 K, respectively. These results are expected to motivate further the applications of clusters to be efficient hydrogen storage materials.

Keywords

Hydrogen storage Planar clusters Theoretical study Quantum chemistry DFT 

Notes

Compliance with ethical standards

Funding

The authors declare no competing financial interest.

Ethical Statement

The paper entitled “A theoretical study on the hydrogen storage properties of planar (AlN) n clusters ( n = 3–5)” by Chen Guo*, and Chong Wang to the famous journal Structural Chemistry. We declare that all the co-authors are aware of and approve of the submission.

Supplementary material

11224_2017_943_MOESM1_ESM.docx (277 kb)
Figure S1 (DOCX 277 kb)
11224_2017_943_MOESM2_ESM.docx (388 kb)
Figure S2 (DOCX 387 kb)
11224_2017_943_MOESM3_ESM.docx (14 kb)
Table S1 (DOCX 14 kb)

References

  1. 1.
    Jena P (2011) J Phys Chem Lett 2:206CrossRefGoogle Scholar
  2. 2.
    Li Y, Yang RT (2006) J Am Chem Soc 128:8136CrossRefGoogle Scholar
  3. 3.
    Kaye SS, Long JR (2005) J Am Chem Soc 127:6506CrossRefGoogle Scholar
  4. 4.
    Hanada N, Ichikawa T, Fujii H (2005) J Phys Chem B 109:7188CrossRefGoogle Scholar
  5. 5.
    Moriarty P, Honnery D (2009) Int J Hydrog Energy 34:31CrossRefGoogle Scholar
  6. 6.
    Coontz R, Hanson B (2004) Science 305:957CrossRefGoogle Scholar
  7. 7.
    Schlapbach L, Zuttel A (2001) Nature 414:353CrossRefGoogle Scholar
  8. 8.
    Chen P, Zhu M (2008) Mater Today 11:36CrossRefGoogle Scholar
  9. 9.
    Principi G, Agresti F, Maddalena A, Russo SL (2009) Energy 34:2087CrossRefGoogle Scholar
  10. 10.
    Hu YH (2013) Int J Energy Res 37:683CrossRefGoogle Scholar
  11. 11.
    Luo W, Campbell PG, Zakharow KN, Liu SY (2011) J Am Chem Soc 133:19326CrossRefGoogle Scholar
  12. 12.
    Zhu HY, Chen YZ, Li S, Yang XD, Liu YN (2011) Int J Hydrog Energy 36:11810CrossRefGoogle Scholar
  13. 13.
    Billur S, Farida LD, Micheal H (2007) Int J Hydrog Energy 32:1121CrossRefGoogle Scholar
  14. 14.
    Zhu HY, Liu YN, Chen YZ, Wen ZY (2010) Appl Phys Lett 96:054101CrossRefGoogle Scholar
  15. 15.
    Dibandjo P, Zlotea C, Gadiou R, Camelia MG, Fermin C, Michel L (2013) Int J Hydrog Energy 38:952CrossRefGoogle Scholar
  16. 16.
    Weng QH, Wang XB, Zhi CY, Bando YS, Golberg D (2013) ACS Nan 7:1558CrossRefGoogle Scholar
  17. 17.
    Tozzini V, Pellegrini V (2013) Phys Chem Chem Phys 15:80CrossRefGoogle Scholar
  18. 18.
    Suh MP, Park HJ, Prasad TK, Lim DW (2009) Chem Soc Rev 38:1294CrossRefGoogle Scholar
  19. 19.
    Dodziuk H, Dolgonos G (2002) Chem Phys Lett 356:79CrossRefGoogle Scholar
  20. 20.
    Shiraishi M, Takenobu T, Ata M (2003) Chem Phys Lett 367:633CrossRefGoogle Scholar
  21. 21.
    Kajiura H, Tsutsui S, Kadono K, Kakuta M, Ata M, Murakami Y (2003) Appl Phys Lett 82:1105CrossRefGoogle Scholar
  22. 22.
    Wu HY, Fan X, Kuo JL, Deng WQ (2011) J Phys Chem C 115:9241CrossRefGoogle Scholar
  23. 23.
    Oku T, Kuno M, Narita I (2004) J Phys Chem Solids 65:549CrossRefGoogle Scholar
  24. 24.
    Rowsell JLC, Yaghi OM (2006) J Am Chem Soc 128:1304CrossRefGoogle Scholar
  25. 25.
    Li Y, Yang RT (2006) J Am Chem Soc 128:726CrossRefGoogle Scholar
  26. 26.
    Han SS, Mendoza-Cortes JL, Goddard III WA (2009) Chem Soc Rev 38:1460CrossRefGoogle Scholar
  27. 27.
    Kuhn P, Antonietti M, Thomas A (2008) Angew Chem Int Ed 47:3450CrossRefGoogle Scholar
  28. 28.
    Klontzas E, Tylianakis E, Froudakis GE (2008) J Phys Chem C 112:9095CrossRefGoogle Scholar
  29. 29.
    Sang SH, Furukawa H, Yaghi OM, Goddard III WA (2008) J Am Chem Soc 130:11580CrossRefGoogle Scholar
  30. 30.
    Züttel A (2003) Mater Today 6:24CrossRefGoogle Scholar
  31. 31.
    Alapati SV, Johnson JK, Sholl DS (2006) J Phys Chem B 110:8769CrossRefGoogle Scholar
  32. 32.
    Song Y (2013) Phys Chem Chem Phys 15:14524CrossRefGoogle Scholar
  33. 33.
    Zuttel A, Remhof A, Borgschulte A, Friedrichs O (2010) Phil Trans R Soc A 368:3329CrossRefGoogle Scholar
  34. 34.
    Zheng J, Xianxin L, Ping X, Pengfei L, Yongzhi Z, Jian Y (2012) Int J Hydrog Energy 37:1048CrossRefGoogle Scholar
  35. 35.
    Ley MB, Jepsen LH, Lee Y, Cho YW, Colbe JMBV, Dornheim M, Rokni M, Jensen JO, Sloth M, Filinchuk Y, Jorgensen JE, Besenbacher F, Jensen TR (2014) Mater Today 17:122CrossRefGoogle Scholar
  36. 36.
    Orimo SI, Nakamori Y, Eliseo J, Zuttel A, Jensen C (2007) Chem Rev 107:4111CrossRefGoogle Scholar
  37. 37.
    Kang S, Karthikeyan S, Lee JY (2013) Phys Chem Chem Phys 15:1216CrossRefGoogle Scholar
  38. 38.
    Sun Q, Wang Q, Jena P, Kawazoe Y (2005) J Am Chem Soc 127:14582CrossRefGoogle Scholar
  39. 39.
    Hussain T, Pathak B, Maark TA, Araujo CM, Scheicher RH, Ahuja R (2011) Europhys. Lett 96:27013CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Zhou J, Wang Q, Sun Q, Jena P (2011) J Phys Chem C 115:6136CrossRefGoogle Scholar
  42. 42.
    Li C, Li J, Wu F, Li SS, Xia JB, Wang LW (2011) J Phys Chem C 115:23221CrossRefGoogle Scholar
  43. 43.
    Li J, Hu Z, Yang G (2012) Chem Phys 392:16CrossRefGoogle Scholar
  44. 44.
    Wang Y, Li X, Wang F, Xu B, Zhang J, Sun Q, Jia Y (2013) Chem Phys 415:26CrossRefGoogle Scholar
  45. 45.
    Shinde R, Tayade M (2014) J Phys Chem C 118:17200CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  47. 47.
    BelBruno JJ (1999) Chem Phys Lett 313:795CrossRefGoogle Scholar
  48. 48.
    Kandalam AK, Blanco MA, Pandey R (2002) J Phys Chem B 106:1945Google Scholar
  49. 49.
    Tavhare P, Kalamse V, Krishna R, Titus E, Chaudhari A (2016) Int J Hydrog Energy 41:11730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of ScienceNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.Department of Chemistry, College of ScienceNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations