Structural Chemistry

, Volume 28, Issue 6, pp 1707–1716 | Cite as

Chlorofluorofullerenes (CFFs)

  • Maryam Anafcheh
  • Fereshteh Naderi
  • Zahra Khodadadi
  • Fatemeh Ektefa
  • Reza Ghafouri
  • Mansour Zahedi
Original Research


We have applied density functional theory calculations to devise stable arrangements of chlorofluorofullerenes (CFFs). In the case of C60ClF and C60Cl2F2, an extensive isomer search shows that the most stable configurations are those with two halogens located on the corannulene-like structure. In general, 1,2-adduct is more stable than 1,4-adduct and 1,2 addition across 6–6 bonds is more stable than 1,2 addition across 5–6 bonds. The formation of a CFF from chlorofullerene is exothermic while chlorination of a fluorofullerene is endothermic. For C60Cl18-3nF3n (n = 0, 1, 2, 3, 4, 5, and 6), the binding energies decrease as the number of Cl atoms increases and the energy differences between isomers with the same formula are small. The 13C NMR patterns of C60Cl18-3nF3n (n = 0, 1, 2, 3, 4, 5, and 6) are divided into two parts: δiso values of chlorinated and fluorinated carbons shift to low field and appear in the range of 65.1–100.2 and 84.5–97.4 ppm; two peaks related to C sites on the cyclohexatriene pole and the flattened equatorial belt separating the two hemispheres appear at 120.2–123.4 and 125.8–129.1 ppm, respectively. Negative nucleus independent chemical shift (NICS) in interior positions of rings or cages indicates the presence of induced diatropic ring currents which suggests that cyclohexatriene poles can be considered as benzenoid fragments. NICS yields minor value (−2.7 ppm) at the ring center of polar pentagons of C60Cl10F10, and significantly negative values in the cage center.


Chlorofluorofullerenes Binding energy DFT NMR NICS 



We are grateful to Professor Seik Weng Ng for making us available his software (G98W) and hardware (machine time) facilities. The financial support of Research Council of Shahid Beheshti University is gratefully acknowledged.

Supplementary material

11224_2017_940_MOESM1_ESM.docx (20 kb)
Table S1 (DOCX 20 kb)
11224_2017_940_MOESM2_ESM.docx (16 kb)
Table S2 (DOCX 15 kb)
11224_2017_940_MOESM3_ESM.docx (28 kb)
Table S3 (DOCX 27 kb)


  1. 1.
    Guldi DM, Asmus K-D (1997) Photophysical properties of mono- and multiply-functionalized fullerene derivatives. J Phys Chem A 101:1472–1481CrossRefGoogle Scholar
  2. 2.
    Illescas BM, Martín N (2000) [60] Fullerene adducts with improved electron acceptor properties. J Org Chem 65:5986–5995CrossRefGoogle Scholar
  3. 3.
    Osuna S, Houk KN (2009) Cycloaddition reactions of butadiene and 1,3-dipoles to curved arenes, fullerenes, and nanotubes: theoretical evaluation of the role of distortion energies on activation barriers. Chem Eur J 15:13219–13231CrossRefGoogle Scholar
  4. 4.
    Stěpánek P, Straka M, Šebestík J, Bouř P (2016) Magnetic circular dichroism of chlorofullerenes: experimental and computational study. Chem Phys Lett 647:117–121CrossRefGoogle Scholar
  5. 5.
    Nambo M, Segawa Y, Itami K (2011) Aziridinofullerene: a versatile platform for functionalized fullerenes. J Am Chem Soc 133:2402–2405CrossRefGoogle Scholar
  6. 6.
    Ramachandran CN, Sathyamurthy N (2007) Time-dependent density functional theoretical study of the absorption properties of BN-substituted C60 fullerenes. J Phys Chem A 111:6901–6903CrossRefGoogle Scholar
  7. 7.
    Anafcheh M, Ghafouri R (2012a) BN-substituted fullerenes C60−2x (BN)x: a computational 11B and 15N NMR study. Struct Chem 23:1921–1929CrossRefGoogle Scholar
  8. 8.
    Anafcheh M, Ghafouri R (2012b) Investigation of curvature effects on the nitrogen and boron electric field gradient and chemical shielding tensors in the mono-BN-substituted fullerenes: a density functional theory. Phys E 45:183–189CrossRefGoogle Scholar
  9. 9.
    Ghafouri R, Anafcheh M (2012) Exploring magnetic properties inside full equatorial BN-substituted fullerenes Cn (n= 20, 24, 30, 36, 60, 80): a computational NICS characterization. Phys E 44:1386–1391CrossRefGoogle Scholar
  10. 10.
    Anafcheh M, Ghafouri R (2014) Mono-and multiply-functionalized fullerene derivatives through 1, 3-dipolar cycloadditions: a DFT study. Phys E 56:351–356CrossRefGoogle Scholar
  11. 11.
    Anafcheh M, Khodadadi Z, Ektefa F, Ghafouri R (2016) Functionalization of pentagon–pentagon edges of fullerenes by cyclic polysulfides: a DFT study. J Phys Chem Solids 92:26–31CrossRefGoogle Scholar
  12. 12.
    Anafcheh M, Ektefa F (2015) Cyclosulfurization of C60 and C70 fullerenes: a DFT study. Struct Chem 26:1115–1124CrossRefGoogle Scholar
  13. 13.
    Troshin PA, Baskakov SA, Shulga YM, Lyubovskaya RN (2004) In the chase of mixed halofullerenes: remarkable transformation of C60Cln (n = 6, 8, 12, 14) to C60Br24. Fuller. Nanotub. Car. N. 12:159–163CrossRefGoogle Scholar
  14. 14.
    Troyanov SI, Troshin PA, Boltalina OV, Kemnitz E (2003) Bromination of [60]fullerene. II. crystal and molecular structure of [60]fullerene bromides, C60Br6, C60Br8, and C60Br24. Fuller. Nanotub. Car. N. 11:61–77CrossRefGoogle Scholar
  15. 15.
    Kuvychko IV, Streletskii AV, Shustova NB, Seppelt K, Drewello T, Popov AA, Strauss SH, Boltalina OV (2010) Soluble chlorofullerenes C60Cl2,4,6,8,10. Synthesis, purification, compositional analysis, stability, and experimental/theoretical structure elucidation, including the X-ray structure of C 1-C60Cl10. J Am Chem Soc 132:6443–6462CrossRefGoogle Scholar
  16. 16.
    Tebbe FN, Becker JY, Chase DB, Firment LE, Holler ER, Malone BS, Krusic PJ, Wasserman E (1991) Multiple, reversible chlorination of C60. J Am Chem Soc 113:9900–9901CrossRefGoogle Scholar
  17. 17.
    Birkett PR, Avent AG, Darwish A, Kroto HW, Taylor R, Walton DRM (1993) Preparation and 13C NMR spectroscopic characterization of C60Cl6. J Chem Soc Chem Commun 15:1230–1232CrossRefGoogle Scholar
  18. 18.
    Wang X-B, Chi C, Zhou M, Kuvychko IV, Seppelt K, Popov AA, Strauss SH, Boltalina OV, Wang L-S (2010) Photoelectron spectroscopy of C60Fn and C60Fm 2− (n = 17, 33, 35, 43, 45, 47; m = 34, 46) in the gas phase and the generation and characterization of C 1-C60F47 and D 2-C60F44 in solution. J Phys Chem A 114:1756–1765CrossRefGoogle Scholar
  19. 19.
    Popov AA, Senyavin VM, Korepanov VI, Goldt IV, Lebedev AM, Stankevich VG, Menshikov KA, Svechnikov NY, Boltalina OV, Kareev IE, Kimura S, Sidorova O, Kanno K, Akimoto I (2009) Vibrational, electronic, and vibronic excitations of polar C60F18 molecules: experimental and theoretical study. Phys Rev B 79:45413CrossRefGoogle Scholar
  20. 20.
    Popov AA, Goryunkov AA, Goldt IV, Kareev IE, Kuvychko IV, Hunnius W-D, Seppelt K, Strauss SH, Boltalina OV (2004) Raman, infrared, and theoretical studies of fluorofullerene C60F20. J Phys Chem A 108:11449–11456CrossRefGoogle Scholar
  21. 21.
    Gakh AA, Tuinman AA (2001) The structure of C60F36. Tetrahedron Lett 42:7133–7135CrossRefGoogle Scholar
  22. 22.
    Troshin PA, Kornev AB, Peregudov AS, Baskakov SA, Lyubovskaya RN (2005) Novel facile routes for synthesis and isolation of fluorofullerenes C60F18 and C60F20 based on commercially available fluorinating reagents. J Fluor Chem 126:1559–1564CrossRefGoogle Scholar
  23. 23.
    Schwarz JA, Contescu C, Putyera K (2004) Dekker encyclopedia of nanoscience and nanotechnology. Marcel Dekker, New YorkGoogle Scholar
  24. 24.
    Strobel P, Riedel M, Ristein J, Ley L, Boltalina O (2005) Surface transfer doping of diamond by fullerene. Diam Relat Mater 14:451–458CrossRefGoogle Scholar
  25. 25.
    Boltalina OV (2000) Fluorination of fullerenes and their derivatives. J Fluor Chem 101:273–278CrossRefGoogle Scholar
  26. 26.
    Xie JRH, Zhao JJ, Sun GY, Cioslowski JJ (2007) Fluorination approach to achieving tunable-optical-gap and large-optical-gap nanomaterials from carbon-caged nanoparticles. J Comput and Theoretical Nanoscience 4:142–146CrossRefGoogle Scholar
  27. 27.
    Okino F, Yajima S, Suganuma S, Mitsumoto R, Seki K, Touhara H (1995) Fluorination of fullerene C60 and electrochemical properties of C60Fx. Synth Met 70:1447–1448CrossRefGoogle Scholar
  28. 28.
    Liu N, Touhara H, Okino F, Kawasaki S, Nakacho Y (1996) Solid-state lithium cells based on fluorinated fullerene cathodes. J Electrochem Soc 143:2267–2272CrossRefGoogle Scholar
  29. 29.
    Burley GA, Avent AG, Boltalina OV, Gol’dt IV, Guldi DM, Marcaccio M, Paolucci F, Paolucci D, Taylor R (2003) A light-harvesting fluorinated fullerene donor-acceptor ensemble; long-lived charge separation. Chem Commun 148–149Google Scholar
  30. 30.
    Gakh AA, Tuinman AA, Adcock JL, Compton RN (1993) Highly fluorinated fullerenes as oxidizers and fluorinating agents. Tetrahedron Lett 34:7167–7170CrossRefGoogle Scholar
  31. 31.
    Shustova NB, Serov M, Troyanov SI (2008) Molecular and crystal structure of the C60F18 adducts with bromine and carbon disulfide. Fullerenes Nanotubes Carbon Nanostruct 16:597–602CrossRefGoogle Scholar
  32. 32.
    Boltalina OV, Street JM, Taylor R (1998) Formation of triumphene, C60F15Ph3: first member of a new trefoil-shaped class of phenylated 60 fullerenes. Chem Commun 1827–1828Google Scholar
  33. 33.
    Denisenko NI, Troyanov SI, Popov AA, Kuvychko IV, Zěmva B, Kemnitz E, Strauss SH, Boltalina OV (2004) Th-C60F24. J Am Chem Soc 126:1618–1619CrossRefGoogle Scholar
  34. 34.
    Troyanov SI, Shustova NB, Popov AA, Feist M, Kemnitz E (2004) Synthesis and properties of inorganic compounds fullerene C60 and C70 chlorination using chlorides SbCl5 and VCl4. Russ J Inorg Chem 49:1303–1307Google Scholar
  35. 35.
    Al-Matar H, Abdul-Sada AK, Avent AG, Fowler PW, Hitchcock PB, Rogers KM, Taylor R (2002) Isolation and characterization of symmetrical C60Me, C60Me5CI and C60Me5O2OH, together with unsymmetrical C60Me5O3H, C60Me5OOH, C60Me4PhO2OH, and C60Me12; fragmentation of methylfullerenols to C58. J Chem Soc Perkin Trans 2:53–58Google Scholar
  36. 36.
    Abdul-Sada AK, Avent AG, Birkett PR, Kroto HW, Taylor R, Walton DRM (1998) A hex ally [60] fullerene, C60 (CH2CH=CH2)6. J Chem Soc Perkin Trans 1:393–395CrossRefGoogle Scholar
  37. 37.
    Avent AG, Birkett PR, Darwish AD, Houlton S, Taylor R, Thomson KST, Wei X-W (2001) Formation and characterisation of alkoxy derivatives of [60]fullerene. J Chem Soc Perkin Trans 2:782–786CrossRefGoogle Scholar
  38. 38.
    Birkett PB, Avent AG, Darwish AD, Hahn I, Kroto HW, Langley GJ, O’Loughlin J, Taylor R, Walton DRM (1997) Arylation of [60]fullerene via electrophilic aromatic substitution involving the electrophile C60Cl6: frontside nucleophilic substitution of fullerenes. J Chem Soc Perkin Trans 2:1121–1125CrossRefGoogle Scholar
  39. 39.
    Schwell M, Gustavsson T, Marguet S, La Vaissiere B, Wachter NK, Birkett PR, Mialocq J-C, Leach S (2001) The fluorescence properties of the phenylated fullerenes C70Ph4, C70Ph6, C70Ph8 and C70Ph10 in room temperature solutions. Chem Phys Lett 350:33–38CrossRefGoogle Scholar
  40. 40.
    Troshin OA, Troshin PA, Peregudov AS, Kozlovskiy VI, Balzarinid J, Lyubovskaya RN (2007) Chlorofullerene C60Cl6: a precursor for straightforward preparation of highly water-soluble polycarboxylic fullerene derivatives active against HIV. Org Biomol Chem 5:2783–2791CrossRefGoogle Scholar
  41. 41.
    Franco JU, Ell JR, Hilton AK, Hammons JC, Olmstead MM (2009) Fullerenes, nanotubes, C60Cl6, C60Br8 and C60(NO2)6 as selective tools in organic synthesis. Carbon Nanostruct 17:349–360CrossRefGoogle Scholar
  42. 42.
    Kupka T, Stachów M, Chełmecka E, Pasterny K, Stobińska M, Stobiński L, Kaminský J (2013) Efficient modeling of NMR parameters in carbon nanosystems. J Chem Theory Comput 9:4275–4286CrossRefGoogle Scholar
  43. 43.
    Facelli J (2011) Chemical shift tensors: theory and application to molecular structural problems. Prog Nucl Magn Reson Spectrosc 58:176–201CrossRefGoogle Scholar
  44. 44.
    Tulyabaev AR, Khalilov LM (2011) On accuracy of the 13C NMR chemical shift GIAO calculations of fullerene C60 derivatives at PBE/3ζ approach. Comput Theor Chem 976:12–18CrossRefGoogle Scholar
  45. 45.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241CrossRefGoogle Scholar
  46. 46.
    Hariharan PC, Pople JA (1974) Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27:209–214CrossRefGoogle Scholar
  47. 47.
    Drago RS (1992) Physical methods for chemists, 2nd edn. Saunders College Publishing, FloridaGoogle Scholar
  48. 48.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  49. 49.
    Hedberg L, Hedberg K, Boltalina OV, Galeva NA, Zapolskii AS, Bagryantsev VF (2004) Electron-diffraction investigation of the fluorofullerene C60F48. J Phys Chem A 108:4731–4736CrossRefGoogle Scholar
  50. 50.
    Liang Y, Shang Z, Wanga G, Caia Z, Pana Y, Zhao X (2004) Multiple addition patterns in chlorofullerenes C60Cl2n (n=1–4). J Molecular Structure (Theochem) 677:15–19CrossRefGoogle Scholar
  51. 51.
    Henderson CC, Rohlfing CM, Assink RA, Cahill PA (1994) C60H4: kinetics and thermodynamics of multiple addition to C60. Angew Chem Intern Ed 33:786–788CrossRefGoogle Scholar
  52. 52.
    Cahill PA (1996) Ab initio computational study of selected C60H6 isomers. Chem Phys Lett 254:257–262CrossRefGoogle Scholar
  53. 53.
    Troshin PA, Popkov O, Lyubovskaya RN (2003) Some new aspects of chlorination of fullerenes. Fuller Nanotub Car N 11:165–185CrossRefGoogle Scholar
  54. 54.
    Neretin IS, Lyssenko KA, Antipin MY, Slovokhotov YL, Boltalina OV, Troshin PA, Lukonin AY, Sidorov LN, Taylor R (2000) C60F18, a flattened fullerene: alias a hexa-substituted. Angew Chem Int Ed 39:3273–3276CrossRefGoogle Scholar
  55. 55.
    Walker O, Mutzenhardt P, Tekely P, Canet D (2002) Determination of carbon-13 chemical shielding tensor in the liquid state by combining NMR relaxation experiments and quantum chemical calculations. J Am Chem Soc 124:865–873CrossRefGoogle Scholar
  56. 56.
    Sun G, Kertesz M (2000) Theoretical 13C NMR spectra of IPR isomers of fullerenes C60, C70, C72, C74, C76, and C78 studied by density functional theory. J Phys Chem A 104:7398–7403CrossRefGoogle Scholar
  57. 57.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888CrossRefGoogle Scholar
  58. 58.
    Bühl M, Hirsch A (2001) Spherical aromaticity of fullerenes. Chem Rev 101:1153–1183CrossRefGoogle Scholar
  59. 59.
    Ghafouri R, Anafcheh M (2013) A computational NICS and 13C NMR characterization of the polyfluorofullerenes C60Fn (n= 18, 20, 24, 36 and 48). J Fluor Chem 145:88–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Maryam Anafcheh
    • 1
  • Fereshteh Naderi
    • 2
  • Zahra Khodadadi
    • 3
  • Fatemeh Ektefa
    • 3
  • Reza Ghafouri
    • 3
  • Mansour Zahedi
    • 4
  1. 1.Department of ChemistryAlzahra UniversityTehranIran
  2. 2.Department of Chemistry, Shahr-e-Qods BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Applied Chemistry, South Tehran BranchIslamic Azad UniversityTehranIran
  4. 4.Department of Chemistry, Faculty of SciencesShahid Beheshti UniversityTehranIran

Personalised recommendations