Advertisement

Structural Chemistry

, Volume 28, Issue 6, pp 1653–1662 | Cite as

Two small molecular propellers and their rotational potential energy surfaces

  • M. Owen HurstJr.
  • Ryan C. Fortenberry
Original Research

Abstract

Molecular propellers based upon the twisting of a disulfide bond are analyzed here as the locomotion source for fullerene nanoparticles. The HC(CCHSSHCC)3CH and related HC(CCHSSNC)3CH bicyclic compounds are optimized and linked to pyracyclene functioning as a model fullerene surface. It is shown that steric hinderance from the hydrogen atoms on both the bottom of the propeller blade and the linker to the fullerene surface can have significant effects on the rotational potential energy surface. Replacing the bottom CH groups on the molecular propeller with nitrogen atoms not only reduces these barriers significantly, but this action creates a strongly dipolar molecule in HC(CCHSSNC)3CH. Such a system would be responsive to and controllable with an external, rotating, magnetic or electric field. Endohedral fullerenes have known applications for targeted delivery, especially in nanomedicine. Providing further control with molecular propellers could enhance the feasibility and use of these technologies.

Keywords

Nanotechnology Molecular propellers Disulfide bonds Quantum chemistry Drug delivery 

Notes

Acknowledgments

Georgia Southern University is thanked for the start-up funds and computer hardware/software necessary to perform this research. Additionally, the WebMO graphical user interface [30] was utilized in the production of the molecules given in the figures.

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  2. 2.
    Kroto HW (1987) Nature 329:529CrossRefGoogle Scholar
  3. 3.
    Terrones M, Hsu WK, Kroto HW, Walton DRM (1999). In: Hirsch A (ed) Fullerenes and related structures. Springer, Berlin, pp 189–234Google Scholar
  4. 4.
    Wu M, Pei Y, Dai J, Li H, Zeng XC (2012) J Phys Chem C 116:11378CrossRefGoogle Scholar
  5. 5.
    Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, Fischer P (2014) ACS Nano 8:8794CrossRefGoogle Scholar
  6. 6.
    Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281CrossRefGoogle Scholar
  7. 7.
    Vicario J, Walko M, Meetsma A, Feringa BL (2006) J Am Chem Soc 128:5127CrossRefGoogle Scholar
  8. 8.
    Michl J, Sykes CH (2009) ACS Nano 3:1042CrossRefGoogle Scholar
  9. 9.
    Prokop A, Vacek J, Michl J (2012) ACS Nano 6:1901CrossRefGoogle Scholar
  10. 10.
    Kudernac T, Ruangsupapichat N, Parschau M, Maciá B., Katsonis N, Harutyunyan SR, Ernst KH, Feringa BL (2011) Nature 479:208CrossRefGoogle Scholar
  11. 11.
    Vacek J, Michl J (2001) Proc Natl Acad Sci 98:5481CrossRefGoogle Scholar
  12. 12.
    Colledge JJ, Warlow B (2010) Ships of the Royal Navy: a complete record of all fighting ships of the Royal Navy from the 15th century to the present., 4th edn. PA, Casemate, HavertownGoogle Scholar
  13. 13.
    Frantz DK, Linden A, Baldridge KK, Siegel JS (2012) J Am Chem Soc 134:1528CrossRefGoogle Scholar
  14. 14.
    Fortenberry RC (2016) RSC Adv 6:43509CrossRefGoogle Scholar
  15. 15.
    Fillmore HL, Shultz MD, Henderson SC, Cooper P, Broaddus WC, Chen ZJ, Shu CY, Zhang J, Ge J, Dorn HC, Corwin F, Hirsch JI, Wilson J, Fatouros PP (2011) Nanomedicine 6:449CrossRefGoogle Scholar
  16. 16.
    Zhang J, Stevenson S, Dorn HC (2013) Acc Chem Res 46:1548CrossRefGoogle Scholar
  17. 17.
    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Nature Rev Mat 1:16014CrossRefGoogle Scholar
  18. 18.
    Beyers R, Kiang CH, Johnson RD, Salem JR, DeVries MS, Yannoni CS, Bethune DS, Dorn HC, Burbank P, Harich K, Stevenson S (1994) Nature 370:196CrossRefGoogle Scholar
  19. 19.
    Rubin Y (1999). In: Hirsch A (ed) Fullerenes and related structures. Springer, Berlin, pp 67–91Google Scholar
  20. 20.
    Herzog U, Rheinwald G (2001) Organometallics 20:5369CrossRefGoogle Scholar
  21. 21.
    Zhou Z, Sarova GH, Zhang S, Ou Z, Tat FT, Kadish KM, Echegoyen L, Guldi DM, Schuster DI, Wilson SR (2006) Chem Eur J 12:4241CrossRefGoogle Scholar
  22. 22.
    Lebedeva MA, Chamberlain TW, Khlobystov AN (2015) Chem Rev 115:11301CrossRefGoogle Scholar
  23. 23.
    Werner HJ, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149CrossRefGoogle Scholar
  24. 24.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  25. 25.
    Fortenberry RC (2016) New J Chem 40:8149Google Scholar
  26. 26.
    Hehre WJ, Ditchfeld R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  27. 27.
    Sherrill CD (2011) Rev Comput Chem 26:1Google Scholar
  28. 28.
    Zheng J, Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:808CrossRefGoogle Scholar
  29. 29.
    Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista FA, Fermann JT, Mintz BJ, Burns LA, Wilke JJ, Abrams ML, Russ NJ, Leininger ML, Janssen CL, Seidl ET, Allen WD, Schaefer III HF, King RA, Valeev EF, Sherrill CD, Crawford TD (2012) Wiley Interdiscip Rev: Comput Mol Sci 2(4): 556Google Scholar
  30. 30.
    Schmidt JR, Polik WF (2013) WebMO Enterprise, version 13.0; WebMO LLC: Holland, MI, USA. http://www.webmo.net
  31. 31.
    Lomas JS, Adenier A (2002) J Chem Soc, Perkin Trans 2:1051Google Scholar
  32. 32.
    Fortenberry RC, Francisco JS (2017) Astrophys J 835:243Google Scholar
  33. 33.
    Shigemitsu Y, Kaneko M, Tajima Y, Takeuchi K (2004) Chem Lett 33:1604CrossRefGoogle Scholar
  34. 34.
    Theis ML, Candian A, Tielens AGGM, Lee TJ, Fortenberry RC (2015) Phys Chem Chem Phys 17:14761CrossRefGoogle Scholar
  35. 35.
    Fortenberry RC, Moore MM, Lee TJ (2016) J Phys Chem A 120:7327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryGeorgia Southern UniversityStatesboroUSA

Personalised recommendations