Skip to main content

Advertisement

Log in

Two small molecular propellers and their rotational potential energy surfaces

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular propellers based upon the twisting of a disulfide bond are analyzed here as the locomotion source for fullerene nanoparticles. The HC(CCHSSHCC)3CH and related HC(CCHSSNC)3CH bicyclic compounds are optimized and linked to pyracyclene functioning as a model fullerene surface. It is shown that steric hinderance from the hydrogen atoms on both the bottom of the propeller blade and the linker to the fullerene surface can have significant effects on the rotational potential energy surface. Replacing the bottom CH groups on the molecular propeller with nitrogen atoms not only reduces these barriers significantly, but this action creates a strongly dipolar molecule in HC(CCHSSNC)3CH. Such a system would be responsive to and controllable with an external, rotating, magnetic or electric field. Endohedral fullerenes have known applications for targeted delivery, especially in nanomedicine. Providing further control with molecular propellers could enhance the feasibility and use of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Kroto HW (1987) Nature 329:529

    Article  CAS  Google Scholar 

  3. Terrones M, Hsu WK, Kroto HW, Walton DRM (1999). In: Hirsch A (ed) Fullerenes and related structures. Springer, Berlin, pp 189–234

  4. Wu M, Pei Y, Dai J, Li H, Zeng XC (2012) J Phys Chem C 116:11378

    Article  CAS  Google Scholar 

  5. Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, Fischer P (2014) ACS Nano 8:8794

    Article  CAS  Google Scholar 

  6. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281

    Article  CAS  Google Scholar 

  7. Vicario J, Walko M, Meetsma A, Feringa BL (2006) J Am Chem Soc 128:5127

    Article  CAS  Google Scholar 

  8. Michl J, Sykes CH (2009) ACS Nano 3:1042

    Article  CAS  Google Scholar 

  9. Prokop A, Vacek J, Michl J (2012) ACS Nano 6:1901

    Article  CAS  Google Scholar 

  10. Kudernac T, Ruangsupapichat N, Parschau M, Maciá B., Katsonis N, Harutyunyan SR, Ernst KH, Feringa BL (2011) Nature 479:208

    Article  CAS  Google Scholar 

  11. Vacek J, Michl J (2001) Proc Natl Acad Sci 98:5481

    Article  CAS  Google Scholar 

  12. Colledge JJ, Warlow B (2010) Ships of the Royal Navy: a complete record of all fighting ships of the Royal Navy from the 15th century to the present., 4th edn. PA, Casemate, Havertown

    Google Scholar 

  13. Frantz DK, Linden A, Baldridge KK, Siegel JS (2012) J Am Chem Soc 134:1528

    Article  CAS  Google Scholar 

  14. Fortenberry RC (2016) RSC Adv 6:43509

    Article  CAS  Google Scholar 

  15. Fillmore HL, Shultz MD, Henderson SC, Cooper P, Broaddus WC, Chen ZJ, Shu CY, Zhang J, Ge J, Dorn HC, Corwin F, Hirsch JI, Wilson J, Fatouros PP (2011) Nanomedicine 6:449

    Article  CAS  Google Scholar 

  16. Zhang J, Stevenson S, Dorn HC (2013) Acc Chem Res 46:1548

    Article  CAS  Google Scholar 

  17. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Nature Rev Mat 1:16014

    Article  CAS  Google Scholar 

  18. Beyers R, Kiang CH, Johnson RD, Salem JR, DeVries MS, Yannoni CS, Bethune DS, Dorn HC, Burbank P, Harich K, Stevenson S (1994) Nature 370:196

    Article  CAS  Google Scholar 

  19. Rubin Y (1999). In: Hirsch A (ed) Fullerenes and related structures. Springer, Berlin, pp 67–91

  20. Herzog U, Rheinwald G (2001) Organometallics 20:5369

    Article  CAS  Google Scholar 

  21. Zhou Z, Sarova GH, Zhang S, Ou Z, Tat FT, Kadish KM, Echegoyen L, Guldi DM, Schuster DI, Wilson SR (2006) Chem Eur J 12:4241

    Article  CAS  Google Scholar 

  22. Lebedeva MA, Chamberlain TW, Khlobystov AN (2015) Chem Rev 115:11301

    Article  CAS  Google Scholar 

  23. Werner HJ, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149

    Article  CAS  Google Scholar 

  24. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  25. Fortenberry RC (2016) New J Chem 40:8149

  26. Hehre WJ, Ditchfeld R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  27. Sherrill CD (2011) Rev Comput Chem 26:1

    Google Scholar 

  28. Zheng J, Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:808

    Article  CAS  Google Scholar 

  29. Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista FA, Fermann JT, Mintz BJ, Burns LA, Wilke JJ, Abrams ML, Russ NJ, Leininger ML, Janssen CL, Seidl ET, Allen WD, Schaefer III HF, King RA, Valeev EF, Sherrill CD, Crawford TD (2012) Wiley Interdiscip Rev: Comput Mol Sci 2(4): 556

    CAS  Google Scholar 

  30. Schmidt JR, Polik WF (2013) WebMO Enterprise, version 13.0; WebMO LLC: Holland, MI, USA. http://www.webmo.net

  31. Lomas JS, Adenier A (2002) J Chem Soc, Perkin Trans 2:1051

    Google Scholar 

  32. Fortenberry RC, Francisco JS (2017) Astrophys J 835:243

  33. Shigemitsu Y, Kaneko M, Tajima Y, Takeuchi K (2004) Chem Lett 33:1604

    Article  CAS  Google Scholar 

  34. Theis ML, Candian A, Tielens AGGM, Lee TJ, Fortenberry RC (2015) Phys Chem Chem Phys 17:14761

    Article  CAS  Google Scholar 

  35. Fortenberry RC, Moore MM, Lee TJ (2016) J Phys Chem A 120:7327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Georgia Southern University is thanked for the start-up funds and computer hardware/software necessary to perform this research. Additionally, the WebMO graphical user interface [30] was utilized in the production of the molecules given in the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Fortenberry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurst, M.O., Fortenberry, R.C. Two small molecular propellers and their rotational potential energy surfaces. Struct Chem 28, 1653–1662 (2017). https://doi.org/10.1007/s11224-017-0931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0931-1

Keywords

Navigation