Structural Chemistry

, Volume 28, Issue 6, pp 1645–1651 | Cite as

Molecular dynamics simulation studies of the ε-CL-20/HMX co-crystal-based PBXs with HTPB

Original Research

Abstract

Molecular dynamics simulations were carried out to explore a ε-CL-20/HMX (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexazaisowurtzitane/1,3,5,7-tetranitro-1,3,5,7- tetrazacyclooctane) co-crystal-based polymer-bonded explosive (PBX) with HTPB (hydroxyl-terminated polybutadiene). The binding energies, pair correlation functions, and mechanical properties of the PBXs were reported. From the calculated binding energy, it was found that the order of the binding energies per unit surface between the crystalline surface and HTPB is (0 1 0) > (1 0 0) > (0 0 1). The pair correlation function revealed that the H···O and H···N H-bonds exist on the interfaces between the crystalline surfaces and HTPB, and the number of H∙∙∙O hydrogen bonds (H-bonds) atom pairs is ten times more than that of H∙∙∙N H-bonds. Additionally, the calculated mechanical data indicated that the stiffness of the co-crystal/HTPB PBX is weaker and its ductility is better than those of the co-crystal.

Keywords

CL-20/HMX co-crystal PBXs (polymer-bonded explosives) Binding energy Pair correlation function analysis Mechanical properties Molecular dynamics (MD) simulation 

Notes

Acknowledgements

This work was supported by the grant from the Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF) (Grant No. U1230120) and funded by the grant from the National Natural Science Foundation of China (Grant No. 11572160).

Compliance with ethical standards

The authors declare that they have no conflict of interest.

References

  1. 1.
    Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24(1):1–30CrossRefGoogle Scholar
  2. 2.
    Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112(1):1–15CrossRefGoogle Scholar
  3. 3.
    Bolton O, Matzger AJ (2011) Improved compatibility and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50(38):8960–8963CrossRefGoogle Scholar
  4. 4.
    Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2: 1 cocrystal of CL-20: HMX. Cryst Growth Des 12(9):4311–4314CrossRefGoogle Scholar
  5. 5.
    Millar DIA, Maynard-Casely HE, Allan DR, Cumming AS, Lennie AR, Mackay AJ, Oswald IDH, Tang CC, Pulham CR (2012) Crystal engineering of energetic materials: co-crystals of CL-20. Crys Eng Commun 14(10):3742–3749CrossRefGoogle Scholar
  6. 6.
    Yang ZW, Li HZ, Huang H, Zhou XQ, Li JS, Nie FD (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos Pyrotech 38(4):495–501CrossRefGoogle Scholar
  7. 7.
    Guo CY, Zhang HB, Wang XC, Xu JJ, Liu Y, Liu XF, Huang H, Sun J (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273CrossRefGoogle Scholar
  8. 8.
    Wang YP, Yang ZW, Li HZ, Zhou XQ, Zhang Q, Wang JH, Liu YC (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotechn 39(4):590–596CrossRefGoogle Scholar
  9. 9.
    Yang Z, Xue YJ, He YH (2016) Thermal sensitivity of CL20/DNB co-crystal research via molecular dynamics simulations. Acta Chim Sin 74(7):612–619CrossRefGoogle Scholar
  10. 10.
    Lara-Ochoa F, Espinosa-Perez G (2007) Cocrystals definitions. Supramol Chem 19(8):553–557CrossRefGoogle Scholar
  11. 11.
    Shan N, Zaworotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discov Today 13(9):440–446CrossRefGoogle Scholar
  12. 12.
    Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) First-principles study of the four polymorphs of crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. J Phys Chem B 111(44):12715–12722CrossRefGoogle Scholar
  13. 13.
    Agrawal JP (2005) Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech 30(5):316–328CrossRefGoogle Scholar
  14. 14.
    Foltz MF, Coon CL, Garcia F, Nichols AL (1994) The thermal compatibility of the polymorphs of hexanitrohexaazaisowurtzitane. Part I Propellants Explos Pyrotech 19(1):19–25CrossRefGoogle Scholar
  15. 15.
    Isayev O, Gorb L, Mo Q, Leszcynski J (2008) Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. J Phys Chem B 112(35):11005–11013CrossRefGoogle Scholar
  16. 16.
    Qasim M, Fredrickson H, Honea P, Furey J, Leszczynski J, Okovytyy S, Szecsody J, Kholod Y (2005) Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction. SAR QSAR Environ Res 16(5):495–515CrossRefGoogle Scholar
  17. 17.
    Long Y, Liu YG, Nie FD, Chen J (2012) Theoretical study of impacting and desensitizing for HMX-graphite mixture explosive. Shock Waves 22(6):605–614CrossRefGoogle Scholar
  18. 18.
    Y. Long, Y. G. Liu, F. D. Nie, J. Chen (2012) Force-field derivation and atomistic simulation of HMX-TATB-graphite mixture explosives. Modell Simul Mater Sci Eng 20(6):065010Google Scholar
  19. 19.
    Long Y, Liu YG, Nie FD, Chen J (2012) Theoretical study of breaking and slipping processes for HMX/graphite interface. Appl Surf Sci 258(7):2384–2392CrossRefGoogle Scholar
  20. 20.
    Xiao JJ, Huang H, Li JS, Zhang H, Zhu W, Xiao HM (2008) A computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomatic simulation. J Mater Sci 43:5685–5691CrossRefGoogle Scholar
  21. 21.
    Ren H, Zhang QY, Chen XW, Zhao W, Zhang JP, Zhang HP, Zeng R, Xu S (2007) A molecular simulation study of a series of cyclohexanone formaldehyde resins: properties and applications in plastic printing. Polymer 48:887–893CrossRefGoogle Scholar
  22. 22.
    Sun T, Liu Q, Xiao JJ, Zhao F, Xiao HM (2014) Molecular dynamics simulation of interface interactions and mechanical properties of CL-20/HMX cocrystal and its based PBXs. Acta Chim Sin 72:1036–1042CrossRefGoogle Scholar
  23. 23.
    Sun H (1998) An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364CrossRefGoogle Scholar
  24. 24.
    Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104(11):2477–2489CrossRefGoogle Scholar
  25. 25.
    Sun T, Xiao JJ, Liu Q, Zhao F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulations. J Mater Chem A 2:13898–13904CrossRefGoogle Scholar
  26. 26.
    Xiao JJ, Huang H, Li JS, Zhang H, Zhu W, Xiao HM (2008) A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB. J Mol Struct THEOCHEM 851:242–248CrossRefGoogle Scholar
  27. 27.
    Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B 110(14):7203–7207CrossRefGoogle Scholar
  28. 28.
    Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393CrossRefGoogle Scholar
  29. 29.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190CrossRefGoogle Scholar
  30. 30.
    M. P. Allen, D. J. Tildesley (1989) Computer simulation of liquids. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Ewald PP (1921) Evaluation of optical and electrostatic lattice potentials. Ann Phys 64:253–287CrossRefGoogle Scholar
  32. 32.
    Xiao JJ, Zhu WH, Zhu W, Xiao HM (2013) Molecular dynamics of energetic materials. Science press, BeijingGoogle Scholar
  33. 33.
    Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45(367):823–843CrossRefGoogle Scholar
  34. 34.
    Pettifor DG (1992) Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol 8(4):345–349CrossRefGoogle Scholar
  35. 35.
    Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM (2012) Study on structure, sensitivity and mechanical properties of HMX and HMX-based PBXs with molecular dynamics simulation. Comput Theor Chem 999:21–27CrossRefGoogle Scholar
  36. 36.
    Parrinello M, Rahman A (1982) Strain fluctuations and elastic constants. J Chem Phys 76(5):2662–2666CrossRefGoogle Scholar
  37. 37.
    Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite materials. Rev Geophys 14(4):541–563CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Molecules and Materials Computation Institute, School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations