Advertisement

Structural Chemistry

, Volume 28, Issue 6, pp 1623–1630 | Cite as

Constructing a novel nonlinear optical materials: substituents and heteroatoms in π-π systems effect on the first hyperpolarizability

  • Yao-Dong Song
  • Liang Wang
  • Li-Ming Wu
Original Research
  • 174 Downloads

Abstract

By doping π-π systems with Li atom, a series of Li@sandwich configuration and Li@T-shaped configuration compounds have been theoretically designed and investigated using density functional theory. It is revealed that energy gaps (E gap) between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of all compounds are in a range of 0.4–0.9 ev. When Li atom is introduced into different sandwich configuration π-π systems (C60-toluene, C60-fluorobenzene, C60-phenol, C60-benzonitrile), Li@C60-benzonitrile exhibits considerable first hyperpolarizability as large as 19,759 au, which is larger by about 18,372–18,664 au than those of other compounds. When Li atom is introduced into different T-shaped configuration π-π systems (C60-pyridine, C60-pyrazine, C60-1, 3, 5-triazine, C60-pyridazine), Li@C60-pyridazine is found to present largest first hyperpolarizability up to 67,945 au in all compounds. All compounds are transparency in the deep ultraviolet spectrum range. We hope that this study could provide a new idea for designing nonlinear optical materials using π-π systems as building blocks.

Keywords

π-π interaction system Electronic structure First hyperpolarizability 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Fujian University of Technology (GY-Z13109), the Education Department of Fujian Province (JB14075), and the Development Fund of Fujian University of Technology (GY-Z160127).

References

  1. 1.
    Sherrill CD (2013) Acc Chem Res 46:1020–1028CrossRefGoogle Scholar
  2. 2.
    Mignon P, Loverix S, Geerlings P (2005) Chem Phys Lett 401:40–46CrossRefGoogle Scholar
  3. 3.
    Ercolani G, Mencarelli P (2003) J Organomet Chem 68:6470–6473CrossRefGoogle Scholar
  4. 4.
    Mishra BK, Sathyamurthy N (2005) J Phys Chem A 109:6–8CrossRefGoogle Scholar
  5. 5.
    Grimme S (2008) Angew Chem Int Ed 47:3430–3434CrossRefGoogle Scholar
  6. 6.
    Sinnokrot MO, Sherrill CD (2004) J Phys Chem A 108:10200–10207CrossRefGoogle Scholar
  7. 7.
    Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:210–1250Google Scholar
  8. 8.
    Burley SK, Petsko GA (1985) Science 23:229Google Scholar
  9. 9.
    Mulliken RS (1952) J Am Chem Soc 74:811–824CrossRefGoogle Scholar
  10. 10.
    Mcneil AJ, Muller P, Whitten JE, Swager TM (2006) J Am Chem Soc 128:12426–12427CrossRefGoogle Scholar
  11. 11.
    Hunter CA, Meah MN, Sanders JKM (1990) J Am Chem Soc 112:5773–5780CrossRefGoogle Scholar
  12. 12.
    Philp D, Stoddart JF (1996) Angew Chem, Int Ed Engl 35:1154–1196CrossRefGoogle Scholar
  13. 13.
    Lerman LS (1961) J Mol Biol 3(1):18IN13–30IN14CrossRefGoogle Scholar
  14. 14.
    Saenger W (1984) Principles of nucleic acid structure. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534CrossRefGoogle Scholar
  16. 16.
    Arunan E, Gutowsky HS (1993) J Chem Phys 98:4294–4296CrossRefGoogle Scholar
  17. 17.
    Sinnokrot MO, Valeev EF, Sherrill CDI (2002) J Am Chem Soc 124:10887–10893CrossRefGoogle Scholar
  18. 18.
    Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112CrossRefGoogle Scholar
  19. 19.
    Sinnokrot MO, Sherrill CD (2004) J Am Chem Soc 126:7690–7697CrossRefGoogle Scholar
  20. 20.
    Hohenstein EG, Sherrill CD (2009) J Phys Chem A 113:878–886CrossRefGoogle Scholar
  21. 21.
    Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) J Am Chem Soc 124:9648–9655CrossRefGoogle Scholar
  22. 22.
    Geskin VM, Lambert C, Brédas JL (2003) J Am Chem Soc 125:15651–15658CrossRefGoogle Scholar
  23. 23.
    Ostroverkhova O, Moemer WE (2004) Chem Rev 104:3267–3314CrossRefGoogle Scholar
  24. 24.
    Coe BJ (2006) Acc Chem Res 39:383–393CrossRefGoogle Scholar
  25. 25.
    Xu HL, Li ZR, Wu D, Ma F, Li ZJ, Gu FL (2009) J Phys Chem C 113:4984–4986CrossRefGoogle Scholar
  26. 26.
    Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) J Phys Chem C 114:19792–19798CrossRefGoogle Scholar
  27. 27.
    Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) J Am Chem Soc 129:2967–2970CrossRefGoogle Scholar
  28. 28.
    Wu HQ, Zhong RL, Sun SL, Xu HL, Su ZM (2014) J Phys Chem C 118:6952–6958CrossRefGoogle Scholar
  29. 29.
    Wang SJ, Li Y, Wang YF, Wu D, Li ZR (2013) Phys Chem Chem Phys 15:12903–12910CrossRefGoogle Scholar
  30. 30.
    Xu HL, Zhang CC, Sun SL, Su ZM (2012) Organometallics 31:4409–4414CrossRefGoogle Scholar
  31. 31.
    Shelton DP, Rice JE (1994) Chem Rev 94:3–29CrossRefGoogle Scholar
  32. 32.
    Willets A, Rice JE, Burland DM, Shelton DP (1992) J Chem Phys 97:7590–7599CrossRefGoogle Scholar
  33. 33.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242CrossRefGoogle Scholar
  34. 34.
    Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) Nat Chem 2:202–206CrossRefGoogle Scholar
  35. 35.
    Jimenez-Halla JOC, Islas R, Heine T, Merino G (2010) Angew Chem Int Ed 49:5668–5671CrossRefGoogle Scholar
  36. 36.
    Uchino T, Kurumoto N, Natsuko S (2006) Phys Rev B 73:233203CrossRefGoogle Scholar
  37. 37.
    Fazio G, Ferrighi L, Valentin CD (2014) J Catal 318:203–210CrossRefGoogle Scholar
  38. 38.
    Zaboli M, Raissi H (2010) Struct Chem 26:1059–1075CrossRefGoogle Scholar
  39. 39.
    Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) J Chem Phys 122:114315CrossRefGoogle Scholar
  40. 40.
    Zhang CC, Xu HL, Hu YY, Sun SL, Su ZM (2011) J Phys Chem A 115:2035–2040CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09. Gaussian Inc., WallingfordGoogle Scholar
  42. 42.
    Dennington R, Keith T, Millam JGV (2009) GaussView, version 5. Semichem, Shawnee Mission, KSGoogle Scholar
  43. 43.
    Lu T, Chen FW (2012) J Comput Chem 33:580–592CrossRefGoogle Scholar
  44. 44.
    Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Aoki Y (2006) J Am Chem Soc 128:1072–1073CrossRefGoogle Scholar
  45. 45.
    Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668CrossRefGoogle Scholar
  46. 46.
    Oudar JL (1977) J Chem Phys 67:446–457CrossRefGoogle Scholar
  47. 47.
    Datta A, Pati SK (2006) Chem Soc Rev 35:1305–1323CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Mathematics and PhysicsFujian University of TechnologyFuzhouPeople’s Republic of China
  2. 2.School of HumanitiesFujian University of TechnologyFuzhouPeople’s Republic of China
  3. 3.Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouPeople’s Republic of China

Personalised recommendations