Skip to main content

Advertisement

Log in

Molecular dynamic investigations of hydrogen storage efficiency of graphene sheets with the bubble structure

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we designed a new type of 3D graphene bubble structure for hydrogen storage in theory. The graphene-based structures are constructed with different sizes of semi-ellipsoidal graphene bubbles. The hydrogen storage efficiency of the graphene bubble structures at ambient conditions (P = 1.0 bar and T = 300 K) is calculated using molecular dynamic (MD) simulations. The effects of number of graphene layers and density and size of bubbles are systematically investigated in the isothermal–isobaric (NPT) ensemble. The MD results reveal that at ambient conditions, the bubble models can achieve the highest volumetric hydrogen storage efficiency of ~45 kg/m3 and gravimetric hydrogen storage efficiency of ~3.75 wt%. The maximum pressures in the bubbles are also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou L, Wang Y, Cao G (2013) Elastic properties of monolayer graphene with different chiralities. J Phys: Condens Matter 25:125302

    Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  Google Scholar 

  3. Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett 8:4283

    Article  CAS  Google Scholar 

  4. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911

    Article  Google Scholar 

  5. Geim AK (2009) Graphene: status and prospects. Science 324:1530

    Article  CAS  Google Scholar 

  6. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  7. Stolyarova E, Stolyarov D, Bolotin K, Ryu S, Liu L, Rim KT, Klima M, Hybertsen M, Pogorelsky I, Pavlishin I, Kusche K, Hone J, Kim P, Stormer HL, Yakimenko V, Flynn G (2009) Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett 9:332

    Article  CAS  Google Scholar 

  8. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132

    Article  Google Scholar 

  9. Jin Z, Lu W, O’Neill KJ, Parilla PA, Simpson LJ, Kittrell C, Tour JM (2011) Nano-engineered spacing in graphene sheets for hydrogen storage. Chem Mater 23:923

    Article  CAS  Google Scholar 

  10. Scanlon LG, Feld WA, Balbuena PB, Sandi G, Duan X, Underwood KA, Hunter N, Mack J, Rottmayer MA, Tsao M (2009) Hydrogen storage based on physisorption. J. Phys. Chem. B 113:4708

    Article  CAS  Google Scholar 

  11. Nechaev YS (2011) The high-density hydrogen carrier intercalation in graphane-like nanostructures, relevance to its on-board storage in fuel-cell-powered vehicles. Open. Fuel. Cells. J. 4:16

    Article  CAS  Google Scholar 

  12. Fagerlund G (1973) Determination of specific surface by the BET method. materiaux et constructions 6:239

    Article  CAS  Google Scholar 

  13. Yao Y, Zhang S, Yan Y (2006) Effect of pretreatment on hydrogen adsorption storage of multi-walled carbon nanotubes. J. East. China. University. Sci. Technol. (Natural Science Edition) 32:1297

    CAS  Google Scholar 

  14. Madro˜nero A, Asenjo A, Gil C, Jaafar M, López A (2010) Reconnaissance of the specific surface of vapour grown carbon micro and nanofibres as a main controller of the sorption of hydrogen. Appl Surf Sci 256:5797

    Article  Google Scholar 

  15. Waqar Z (2007) Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption. J Mater Sci 42:1169

    Article  CAS  Google Scholar 

  16. Boström M, Sernelius BE (2012) Repulsive van der Waals forces due to hydrogen exposure on bilayer graphene. Phys Rev A 85:012508

    Article  Google Scholar 

  17. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385

    Article  CAS  Google Scholar 

  18. Banhart F, Ajayan PM (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382:433

    Article  CAS  Google Scholar 

  19. Galanov BA, Galanov SB, Gogotsi Y (2002) Stress–strain state of multiwall carbon nanotube under internal pressure. J Nanopart Res 4:207

    Article  CAS  Google Scholar 

  20. Nechaev YS (2011) On the solid hydrogen carrier intercalation in graphane-like regions in carbon-based nanostructures. Int. J. Hydrogen. Energ. 36:9023

    Article  CAS  Google Scholar 

  21. Dervishi E, Biris AR, Watanabe F, Umwungeri JL, Mustafa T, Driver JA, Biris AS (2012) Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe: Mo: MgO catalyst system. J Mater Sci 47:1910

    Article  CAS  Google Scholar 

  22. Watcharinyanon S, Virojanadara C, Osiecki JR, Zakharov AA, Yakimova R, Uhrberg RIG, Johansson LI (2011) Hydrogen intercalation of graphene grown on 6H-SiC (0001). Surf Sci 605:1662

    Article  CAS  Google Scholar 

  23. Diego S. Materials Studio. CA: Accelrys Inc.bhc

  24. Sun H (1998) COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102:7338

    Article  CAS  Google Scholar 

  25. Rigby D, Sun H, Eichinger BE (1997) Computer simulations of poly (ethylene oxide): force field, PVT diagram and cyclization behaviour. Polym Int 44:311

    Article  CAS  Google Scholar 

  26. Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F, Dong M (2010) Fabrication of carbon nanoscrolls from monolayer graphene. Small 6:2010

    Article  CAS  Google Scholar 

  27. Grujicica M, Caoa G, Royb WN (2004) Atomistic modeling of solubilization of carbon nanotubes by non-covalent functionalization with poly (p-phenylenevinyleneco-2,5-dioctoxy-m-phenylenevinylene). Appl Surf Sci 114:054313

    Google Scholar 

  28. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1

    Article  CAS  Google Scholar 

  29. Liu XY, Wang FC, Park HS, Wu HA (2013) Defecting controllability of bombarding graphene with different energetic atoms via reactive force field model. J Appl Phys 114:054313

    Article  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33

    Article  CAS  Google Scholar 

  31. Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353

    Article  CAS  Google Scholar 

  32. He XQ, Kitipornchai S, Liew KM (2005) Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16:2086

    Article  CAS  Google Scholar 

  33. Wu CD, Fang TH, Lo JY, Feng YL (2013) Molecular dynamics simulations of hydrogen storage capacity of few-layer graphene. J Mol Model 19:3813

    Article  CAS  Google Scholar 

  34. Georgiou T, Britnell L, Blake P, Gorbachev RV, Gholinia A, Geim AK, Casiraghi C, Novoselov KS (2011) Graphene bubbles with controllable curvature. Appl Phys Lett 99:093103

    Article  Google Scholar 

  35. Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Castro Neto AH, Crommie MF (2010) Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329:544

    Article  CAS  Google Scholar 

  36. Mu W, Zhang G, Ou-Yang ZC (2013) Radius-voltage relation of graphene bubbles controlled by gate voltage. Appl Phys Lett 103:053112

    Article  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (NSAF. Grant No. 1176020 and NSFC. Grant No. 11074176), the support from Research Fund for the Doctoral Program of Higher Education of China (Grant NO. 20100181110080) and the support from the talent introduction program of Sichuan University of Science and Engineering (Grant NO. 2013RC07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Lu Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Cheng, XL., Zhang, H. et al. Molecular dynamic investigations of hydrogen storage efficiency of graphene sheets with the bubble structure. Struct Chem 26, 531–537 (2015). https://doi.org/10.1007/s11224-014-0515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0515-2

Keywords

Navigation