Skip to main content
Log in

Correlations between hardness, electrostatic interactions, and thermodynamic parameters in the decomposition reactions of 3-buten-1-ol, 3-methoxy-1-propene, and ethoxyethene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Decomposition of the three isomeric compounds, 3-buten-1-ol (1), 3-methoxy-1-propene (2), and ethoxyethene (3), at two different (300 and 550 K) temperatures has been investigated by means of ab initio molecular orbital theory (MP2/6-311+G**//B3LYP/6-311+G**), hybrid-density functional theory (B3LYP/6-311+G**), the complete basis set, nuclear magnetic resonance analysis, and the electrostatic model associated with the dipole–dipole interactions. All three levels of theory showed that the calculated Gibbs free energy differences between the transition and ground state structures (ΔG ) increase from compound 1 to compound 3. The variations of the calculated ΔG values can not be justified by the decrease of the calculated global hardness (η) differences between the ground and transition states structures (i.e., Δ[η(GS)−η(TS)]). Based on the synchronicity indices, the transition state structures of compounds 13 involve synchronous aromatic transition structures, but there is no significant difference between their calculated synchronicity indices. The optimized geometries for the transition state structures of the decomposition reactions of compounds 13 consist in chair-like six-membered rings. The variation of the calculated activation entropy (ΔS ) values can not be justified by the decrease of Δ[η(GS)−η(TS)] parameter from compound 1 to compound 3. On the other hand, dipole moment differences between the ground and transition state structures [Δ(µ TSµ GS)] decrease from compound 1 to compound 3. Therefore, the electrostatic model associated with the dipole–dipole interactions justifies the increase of the calculated ΔG values from compound 1 to compound 3. The correlations between ΔG , Δ[η(GS)−η(TS)], (ΔS ), k(T), electrostatic model, and structural parameters have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold RT, Smolinsky G (1959) J Am Chem Soc 81:6443–6445

    Article  CAS  Google Scholar 

  2. Arnold RT, Smolinsky G (1960) J Org Chem 25:129–130

    Article  CAS  Google Scholar 

  3. Smith GG, Yates BL (1965) J Chem Soc 7242–7246

  4. Henao D, Murillo J, Ruiz P, Quijano J, Mejía B, Castañeda L, Notario R (2012) J Phys Org Chem 25:883–887

    Article  CAS  Google Scholar 

  5. Sakai Y, Ando H, Oguchi T, Murakami Y (2013) Chem Phys Lett 556:29–34

    Article  CAS  Google Scholar 

  6. Quijano J, David J, Sanchez C, Rincon E, Guerra D, Leon LA, Notario R, Abboud JL (2002) J Mol Struct (Theochem) 580:201–205

    Article  CAS  Google Scholar 

  7. Smith GG, Blau SE (1964) J Phys Chem 68:1231–1234

    Article  CAS  Google Scholar 

  8. DePuy CH, King RW (1960) Chem Rev 60:431–457

    Article  CAS  Google Scholar 

  9. Glasstone KJ, Laidler KJ, Erying H (1941) The theory of rate processes Chapter 4. McGraw-Hill, New York

    Google Scholar 

  10. Benson SW (1969) The foundations of chemical kinetics. McGraw-Hill, New York

    Google Scholar 

  11. Alder K, Pascher F, Schmitz A (1943) Chem Ber 76:27–53

    Article  Google Scholar 

  12. Hoffmann HMR (1969) Angew Chem Int Ed Engl 8:556–557

    Article  CAS  Google Scholar 

  13. Lopez V, Quijano J, Luna S, Ruiz P, Rios D, Parra W, Zapata E, Gaviria J, Notario R (2013) Struct Chem 24:1811–1816

    Article  CAS  Google Scholar 

  14. Blades AT, Murphy GW (1952) J Am Chem Soc 74:1039–1041

    Article  CAS  Google Scholar 

  15. Shimofuji K, Saito K, Imamura A (1991) J Phys Chem 95:155–165

    Article  CAS  Google Scholar 

  16. Ibuki T, Takezaki Y (1977) Int J Chem Kinet 9:201–213

    Article  CAS  Google Scholar 

  17. Chamorro E, Quijano J, Notario R, Sánchez C, León LA, Chuchani G (2003) Int J Quant Chem 91:618–625

    Article  CAS  Google Scholar 

  18. Hehri WJ, Radom L, PvR Scheleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  19. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  20. Seminario JM, Politzer P (eds) (1995) Modern density function theory, a tool for chemistry. Elsevier, Amsterdam

    Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  24. McIver JW Jr., (1974) Acc Chem Res 7:72–84

    Article  CAS  Google Scholar 

  25. Ermer O (1975) Tetrahedron 31:1849–1854

    Article  CAS  Google Scholar 

  26. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  27. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann Jr., RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98, Revision A.3, Gaussian Inc., Pittsburgh, PA

  29. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJVE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  30. Tapu D, Dixon DA, Roe C (2009) Chem Rev 109:3385–3407

    Article  CAS  Google Scholar 

  31. Glasstone KJ, Laidler KJ, Eyring H (1941) The theory of rate processes, Chap 4. McGraw-Hill, New York

    Google Scholar 

  32. Pearson RG, Palke WE (1992) J Phys Chem 96:3283–3285

    Article  CAS  Google Scholar 

  33. Chattaraj PK, Gutiérrez-Oliva S, Jaque P, Toro-Labbé A (2003) Mol Phys 101:2841–2853

    Article  CAS  Google Scholar 

  34. Ghanty TK, Ghosh SK (2002) J Phys Chem A 106:4200–4204

    Article  CAS  Google Scholar 

  35. Perez P, Toro-Labbe A (2000) J Phys Chem A 104:1557–1562

    Article  CAS  Google Scholar 

  36. Borden WT, Loncharich RJ, Houk KN (1988) Annu Rev Phys Chem 39:213–236

    Article  CAS  Google Scholar 

  37. Dewar MJS (1959) Tetrahedron Lett 16–18

  38. Benchouk W, Mekelleche SM (2008) J Mol Struct (THEOCHEM) 862:1–6

    Article  CAS  Google Scholar 

  39. Moyano A, Pericas MA, Valenti EA (1989) J Org Chem 54:573–582

    Article  CAS  Google Scholar 

  40. Lecea B, Arrieta A, Roa G (1994) J Am Chem Soc 116:9613–9619

    Article  CAS  Google Scholar 

  41. Morao I, Lecea B, Cossio FP (1997) J Org Chem 62:7033–7036

    Article  Google Scholar 

  42. Cossio FP, Morao I, Jiao H, Schleyer PVR (1999) J Am Chem Soc 121:6737–6746

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by the research grant from the Research Council of the Ahvaz Branch, Islamic Azad University. We thank Dr. Daryoush Tahmasebi for CBS-4 calculations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neda Hasanzadeh or Davood Nori-Shargh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanzadeh, N., Nori-Shargh, D., Kayi, H. et al. Correlations between hardness, electrostatic interactions, and thermodynamic parameters in the decomposition reactions of 3-buten-1-ol, 3-methoxy-1-propene, and ethoxyethene. Struct Chem 26, 547–554 (2015). https://doi.org/10.1007/s11224-014-0514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0514-3

Keywords

Navigation