Skip to main content

Advertisement

Log in

Dispersion-corrected DFT study on the structure and absorption properties of crystalline 5-nitro-2,4-dihydro-1,2,4-triazole-3-one under compression

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Dispersion-corrected DFT calculations have been performed to study the crystal structure, electronic structure, and absorption properties of crystalline 5-nitro-2,4-dihydro-1,2,4-triazole-3-one (NTO) under hydrostatic pressure of 0–160 GPa. Our results show that the lattice parameters b and c are sensitive to van der Waals interactions and the structure is the stiffest in the a direction. At 150 GPa, NTO decomposes by the breaking of N–O bond of nitro group and polymerizes by forming a new N–H covalent bond between one nitrogen atom in the ring and one hydrogen atom linked to the ring in another molecule. An analysis of the density of states of NTO indicates that O atom in NO2, N atom in the ring, and O atom in C=O act as active centers. The absorption spectra show that NTO has relatively high absorption activity with the increasing pressure. When pressure increases from 140 to 150 GPa, its optical activity is enhanced and reduced at visible light region and near ultraviolet region, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee KY, Chapman LB, Coburn MD (1987) J Energ Mater 5:27–33

    Article  CAS  Google Scholar 

  2. Ritchie JP (1989) J Org Chem 54:3553–3560

    Article  CAS  Google Scholar 

  3. Finch A, Gardner PJ, Head AJ, Majdi HS (1991) J Chem Thermodyn 23:1169–1173

    Article  CAS  Google Scholar 

  4. Lee KY, Gilardi R (1993) Mater Res Soc Proc 295:237–242

    Google Scholar 

  5. Bolotina NB, Zhurova EA, Pinkerton AA (2003) J Appl Cryst 36:280–285

    Article  CAS  Google Scholar 

  6. Valery PS, Sergei PS, Viacheslav YE (2007) Propell Explos Pyrot 32:277–287

    Article  Google Scholar 

  7. Trott WM, Renlund AM (1988) J Phys Chem 92:5921–5925

    Article  CAS  Google Scholar 

  8. Satija SK, Swanson B, Eckert J, Gladstone JA (1991) J Phys Chem 95:10103–10109

    Article  CAS  Google Scholar 

  9. Stevens LL, Velisavljevic N, Hooks DE, Dattelbaum DM (2008) Propell Explos Pyrot 33:286–295

    Article  CAS  Google Scholar 

  10. Pravica M, Yulga B, Tkachev S, Liu Z (2009) J Phys Chem A 113:9133–9137

    Article  CAS  Google Scholar 

  11. Davidson AJ, Dias RP, Dattelbaum DM, Yoo C (2011) J Chem Phys 135:174507-1–174507-5

    Article  Google Scholar 

  12. Wu CJ, Yang LH, Fried LE (2003) Phys Rev B 67:235101-1–235101-7

    Google Scholar 

  13. Byrd EFC, Rice BM (2007) J Phys Chem C 111:2787–2796

    Article  CAS  Google Scholar 

  14. Liu H, Zhao J, Du J, Gong Z, Li G, Wei D (2007) Phys Lett A 367:383–388

    Article  CAS  Google Scholar 

  15. Sorescu DC, Rice BM (2010) J Phys Chem C 114:6734–6738

    Article  CAS  Google Scholar 

  16. Budzevich MM, Landerville AC, Conroy MW, Lin Y, Oleynik II, White CT (2010) J Appl Phys 107:113524-1–113524-6

    Article  Google Scholar 

  17. Manaa MR, Fried LE (2012) J Phys Chem C 116:2116–2122

    Article  CAS  Google Scholar 

  18. Hiyoshi EI, Kohno YJ, Takahashi O, Nakamura J, Yamaguchi Y, Matsumoto S, Azuma N, Ueda K (2006) J Phys Chem A 110:9816–9827

    Article  CAS  Google Scholar 

  19. Xu LN, Fang GY, Li XH, Yuan JX, Hu XG, Zhu WH, Xiao HM, Ji GF (2007) J Mol Graph Model 26:415–419

    Article  CAS  Google Scholar 

  20. Zhu WH, Xiao HM (2006) J Phys Chem B 110:18196–18203

    Article  CAS  Google Scholar 

  21. Byrd EFC, Rice BM (2007) J Phys Chem C 111:2787–2796

    Article  CAS  Google Scholar 

  22. Zhu WH, Xiao HM (2008) J Comput Chem 29:176–184

    Article  CAS  Google Scholar 

  23. Zhu WH, Wei T, Zhu W, Xiao HM (2008) J Phys Chem A 112:4688–4693

    Article  CAS  Google Scholar 

  24. Zhu WH, Xiao HM (2009) J Phys Chem B 113:10315–10321

    Article  CAS  Google Scholar 

  25. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  26. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  28. Fletcher R (1980) Practical methods of optimization, vol 1. Wiley, New York

    Google Scholar 

  29. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  30. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  31. Ortmann F, Bechstedt F, Schmidt WG (2006) Phys Rev B 73:205101-1–205101-10

    Article  Google Scholar 

  32. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  33. Wu Q, Zhu WH, Xiao HM (2013) J Phys Chem C 117:16830–16839

    Article  CAS  Google Scholar 

  34. Wu Q, Zhu WH, Xiao HM (2014) RSC Adv 4:15995–16004

    Article  CAS  Google Scholar 

  35. Wu Q, Zhu WH, Xiao HM (2014) Struct Chem 25:451–461

    Article  CAS  Google Scholar 

  36. Politzer P, Murray JS (2014) Struct Chem 20:2223–2230

    Google Scholar 

  37. Garland NL, Ladouceur HD, Nelson HH (1997) J Phys Chem A 101:8508–8512

    Article  CAS  Google Scholar 

  38. Kohno YJ, Takahashi O, Saito K (2001) Phys Chem Chem Phys 3:2742–2746

    Article  CAS  Google Scholar 

  39. Zhu WH, Xiao JJ, Ji GF, Zhang F, Xiao HM (2007) J Phys Chem B 111:12715–12722

    Article  CAS  Google Scholar 

  40. Zhu WH, Xiao HM (2010) Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  41. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  42. Saha S, Sinha TP, Mookerjee A (2000) Phys Rev B 62:8828–8834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21273115) and a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. Q. Wu would like to thank the Innovation Project for Postgraduates in Universities of Jiangsu Province (Grant No. CXZZ13_0199) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhu, W. & Xiao, H. Dispersion-corrected DFT study on the structure and absorption properties of crystalline 5-nitro-2,4-dihydro-1,2,4-triazole-3-one under compression. Struct Chem 26, 477–484 (2015). https://doi.org/10.1007/s11224-014-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0506-3

Keywords

Navigation