Skip to main content
Log in

Electronic structures, intramolecular hydrogen bond interaction, and aromaticity of substituted 4-amino-3-penten-2-one in ground and electronic excited state

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The hydrogen bond strength, molecular structure, and several well-established indices of aromaticity have been evaluated for 4-amino-3-penten-2-one and its 20 derivatives by means of density functional theory (DFT) with 6-311++G** basis set in the gas phase and the water solution. Moreover, the excited-state properties of intramolecular hydrogen bonding (IHB) in these systems have been investigated theoretically using the time-dependent density functional theory (TD-DFT). The nature of IHB interaction has been explored by calculation of electron density ρ(r) and Laplacian ∇2 ρ(r) at the bond critical point (BCP) using atoms-in-molecule (AIM) theory. Results of AIM calculations indicate that H···O bond possesses low ρ and positive ∇2 ρ(r), which are in agreement with electrostatic character of the IHB, whereas N–H11 bond has covalent character (∇2 ρ < 0). Furthermore, the analysis of hydrogen bond in this molecule and its derivatives by natural bond orbital (NBO) methods supports the DFT results. The various correlations are found between geometrical, energetic, and topological parameters. The substituent effect is also analyzed and it is found that the strongest/weakest hydrogen bonds exist for CF3/F substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saeed BA, Elias RS, Musad EA (2011) Intrahydrogen bonding and transition states between enol and enethioltautomers beta thioxoketones. Am J Appl Sci 8:762–765

    Article  CAS  Google Scholar 

  2. Hogenkamp DJ, Johnstone TBC, Huang JC, Li WY, Tran M (2007) Enaminone amides as novel orally active GABAA receptor modulators. J Med Chem 50:3369–3379

    Article  CAS  Google Scholar 

  3. Idafiogho IO, Ananthalakshmi KVV, Combian SB (2006) Anticonvulsant evaluation and mechanism of action of benzyl amino enaminones. Bioorg Med Chem 14:5266–5272

    Article  Google Scholar 

  4. Ghandi M, Jamea AH (2011) Pyridine-mediated, one-pot, stereoselective synthesis of acyclicenaminones. Tetrahedron Lett 52:4005–4007

    Article  CAS  Google Scholar 

  5. Michael JP, De Koning CB, Gravestock D, Hosken GD, Howard AS (1999) Enaminones: versatile intermediates for natural product synthesis. Pure Appl Chem 71:979–988

    Article  CAS  Google Scholar 

  6. Elias RS (2012) Theoretical study of the proton transfer in enaminones. Am J Appl Sci 9(1):103–106

    Article  CAS  Google Scholar 

  7. Junior AW, Oliveira ARM, de Chunha CJ, Simonelli F, Marques FA (1999) Synthesis of enaminones with stationary stereochemistry. J Braz Chem Soc 10:369–374

    Article  Google Scholar 

  8. Makarova NV, Zemtsova MN, Moiseev IK, Ozerov AA, Petrov VI, Grigor’ev IA (2000) Psychotropic activity of some aminoketones belonging to the adamantane group. Pharm Chem J 34:293–296

    Article  CAS  Google Scholar 

  9. Sánchez C, Hyttel J (1999) Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 19:467–489

    Article  Google Scholar 

  10. Weinstein J, Wyman GM (1958) A study of β-amino-α, β-unsaturated ketones. J Org Chem 23:1618–1622

    Article  CAS  Google Scholar 

  11. Bertolasi V, Pretto L, Ferretti V, Gilli P, Gilli G (2006) Interplay between steric and electronic factors in determining the strength of intramolecular N–H∙O resonance-assisted hydrogen bonds in β-enaminones. Acta Crystallogr B 62:1112–1120

    Article  CAS  Google Scholar 

  12. Dudeck GO, Holm RH (1962) Nuclear magnetic resonance studies of keto-enol equilibria: α, β-unsaturated β-ketoamines. J Am Chem Soc 84:2691–2696

    Article  Google Scholar 

  13. Dudeck GO, Volpp GP (1963) Nuclear magnetic resonance studies of keto-enol equilibria: isomerization in aliphatic schiff bases. J Am Chem Soc 85:2697–2702

    Article  Google Scholar 

  14. Dudeck GO, Dudeck EP (1971) Spectroscopic studies of keto-enol equilibria: N-substituted imines. J Chem Soc B 1356–1360

  15. Tayyar SF, Fazli M, Milani-nejad F (2001) Molecular conformation and intramolecular hydrogen bonding in 4-amino-3-penten-2-one. J Mol Struct (Theochem) 541:11–15

    Article  Google Scholar 

  16. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  17. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  18. Desiraju G, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  19. Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory. J Mol Struct 552:1–15

    Article  CAS  Google Scholar 

  20. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed Engl 41:49–76

    Google Scholar 

  21. van der Varart A, Merz KM (2002) Charge transfer in small hydrogen bonded clusters. J Chem Phys 116:7380–7388

    Article  Google Scholar 

  22. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, New York

    Book  Google Scholar 

  23. Deechongkit S, Dawson PE, Kelly JW (2004) Toward assessing the position-dependent contributions of backbone hydrogen bonding to beta-sheet folding thermodynamics employing amide-to-ester perturbations. J Am Chem Soc 126(51):16762–16771

    Article  CAS  Google Scholar 

  24. Noveron JC, Lah MS, Del Sesto RE, Arif AM, Miller JS, Stang PJ (2004) Engineering the structure and magnetic properties of crystalline solids via the metal-directed self-assembly of a versatile molecular building unit. J Am Chem Soc 126:6613–6625

    Google Scholar 

  25. Stockton WB, Rubner MF (1997) Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding I. Macromolecules 30(9):2717–2725

    Article  CAS  Google Scholar 

  26. Zhao GJ, Han KL (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413

    Article  CAS  Google Scholar 

  27. Zhao G, Yu F, Zhang M, Northrop B, Yang H, Han K, Stang P (2011) Substituent effects on the intramolecular charge transfer and fluorescence of bimetallic platinum complexes. J Phys Chem A 115:6390–6393

    Article  CAS  Google Scholar 

  28. Cao X, Liu C, Liu Y (2012) Theoretical studies on the mechanism of cyclic nucleotide monophosphate hydrolysis with in phosphodiesteres. Theor Comput Chem 11:573–586

    Article  CAS  Google Scholar 

  29. Raymo FM, Bartberger MD, Houk KN, Stoddart JF (2001) The magnitude of [C–H***O] hydrogen bonding in molecular and supramolecular assemblies. J Am Chem Soc 123:9264–9267

    Article  CAS  Google Scholar 

  30. Glasbeek M, Zhang H (2004) Femtosecond studies of salvation and intramolecular configurational dynamics of fluorophores in liquid solution. Chem Rev 104:1929–1954

    Article  CAS  Google Scholar 

  31. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effect. J Phys Rev 140:1133–1138

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Liu G, Stefanov BB, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nana-yakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision C.02 (or D.01). Gaussian Inc., Pittsburgh

    Google Scholar 

  33. Bader RFW (1990) Atoms in molecules—a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  34. AIM2000 designed by Friedrich Biegler-König, University of Applied Sciences, Bielefeld

  35. Biegler-König FW, Bader RFW, Tang YH, Tal Y (1982) Calculation of the average properties of atoms in molecules. J Comput Chem 3:317–328

    Article  Google Scholar 

  36. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1992) NBO, Version 3.1. Gaussian Inc., Pittsburgh

    Google Scholar 

  37. Glendening ED, Reed AE, Carpenter JE, Weienhold F (1996) NBO, Version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  38. Wendt M, Weinhold F (2001) NBOView 1.0: theoretical chemistry institute. University of Wisconsin, Madison

    Google Scholar 

  39. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  40. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of asolute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. J Chem Phys 55:117–129

    CAS  Google Scholar 

  41. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  42. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  43. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  44. Krygowski TM, Cyranski MK (1996) Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron 52:1713–1722

    Article  CAS  Google Scholar 

  45. Poater J, Fradera X, Duran M, Sola` M (2003) Three-dimensional structure-activity relationship modeling of cross-reactivities of apolyclonal antibody against pyrene by comparative molecular field analysis. Chem Eur J 9:400–40640

    Article  CAS  Google Scholar 

  46. Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  47. Matito E, Duran M, Sola‘ M (2005) The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization. J Chem Phys 122:014109

    Article  Google Scholar 

  48. Matito E, Salvador P, Duran M, Solà M (2006) Aromaticity measures from fuzzy-atom bond orders. The aromatic fluctuation (FLU) and the para-delocalization (PDI) indexes. J Chem Phys A 110:5108–5113

    Article  CAS  Google Scholar 

  49. Espinosa E, Molins E (2000) Retrieving interaction potentials from the topology of the electron density distribution: the case of hydrogen bonds. J Chem Phys 113:5686–5694

    Article  CAS  Google Scholar 

  50. Espionsa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr B 55:563–572

    Article  Google Scholar 

  51. Grabowski SJ (2001) A new measure of hydrogen bonding strength—ab initio and atoms in molecules studies. Chem Phys Lett 338:361–366

    Article  CAS  Google Scholar 

  52. Carrol MT, Chang C, Bader RFW (1988) Prediction of the structures of hydrogen-bonded complexes using the laplacian of the charge density. Mol Phys 63:387–405

    Article  Google Scholar 

  53. Carrol MT, Chang C, Bader RFW (1988) An analysis of the hydrogen bond in BASE–HF complexes using the theory of atoms in molecules. Mol Phys 65:695–722

    Article  Google Scholar 

  54. Koch U, Popelier P (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Chem Phys 99:9747–9754

    Article  CAS  Google Scholar 

  55. Mó O, Yàñes M, Elguero J (1992) Cooperative (non pairwise) effects in water trimers: an ab initio molecular orbital study. J Phys Chem 97:6628–6638

    Article  Google Scholar 

  56. Mó O, Yàñes M, Elguero J (1994) Cooperative effects in the cyclic trimer of methanol: an ab initio molecular orbital study. J Mol Struct (Theochem) 314:73–81

    Article  Google Scholar 

  57. Mó O, Yàñes M, Elguero J, Rozas I (1994) Structure, vibrational frequencies and thermodynamic properties of hydrogen peroxide dimmers: an ab initio molecular orbital study. J Phys Chem 100:2871–2877

    Article  Google Scholar 

  58. Raissi H, Yoosefian M, Mollania F (2012) Comprehensive study of the interaction between hydrogen halides and methanol derivatives. Int J Quant Chem 112:2782–2786

    Article  CAS  Google Scholar 

  59. Reed AE, Curtiss LA, Weinhold FA (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  60. Gilli P, Bertolasi V, Ferretti V, Gilli G (2002) The nature of solid-state N-H···O/O–H···N tautomeric competition in resonant systems, intramolecular proton transfer in low-barrier hydrogen bonds formed by the ketohydrazone-azoenol system. A variable-temperature X-ray crystallographic and DFT computational study. J Am Chem Soc 124:13554–13567

  61. Hansch C, Leo A, Taft RW (1991) A survey of hammett substituent constants and resonance and field parameters. Chem Rev 97:165–195

    Article  Google Scholar 

  62. Shahamirian M, Cyranski MK, Krygowski TM (2011) Conjugation paths in monosubstituted 1,2- and 2,3-naphthoquinones. J Phys Chem 115:12688–12694

    Article  CAS  Google Scholar 

  63. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  64. Pophristic V, Goodman L (2001) Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature 411:565–568

    Article  CAS  Google Scholar 

  65. Goodman L, Pophristic V, Weinhold F (1999) Origin of methyl internal rotation barriers. Acc Chem Res 32:983–993

    Article  CAS  Google Scholar 

  66. Shreiner PR (2002) Teaching the right reasons: lessons from the mistaken origin of the rotational barrier in ethane. Angew Chem Int Ed 41:3579–3582

    Article  Google Scholar 

  67. Nakai H, Kawamura Y (2000) π*–σ* hyperconjugation mechanism on the rotational barrier of the methyl group (II): 1- and 2-methyl naphthalenes in the S0, S1, C0, and A1 states. Chem Phys Lett 318:298–304

    Article  CAS  Google Scholar 

  68. Kawai M, Nakai H (2001) π–σ* Hyperconjugation mechanism on methyl rotation in cationic state of substituted toluenes. Chem Phys 273:191–196

    Article  CAS  Google Scholar 

  69. Fukui K, Yonezaw T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  70. Mendoza-Huizar LH, Rios-Reyes CH (2011) Chemical reactivity of atrazine employing the Fukui function. J Mex Chem Soc 55(3):142–147

    CAS  Google Scholar 

  71. Liao HY (2009) Computational study on the unconventional hydrogen-bonded F-H···C systems. J Chin Chem Soc 56:532–538

    CAS  Google Scholar 

  72. Li FY, Zhao JJ (2010) Quantum chemistry PM3 calculations of sixteen mEGF molecules. J At Mol Sci 1:68–77

    Google Scholar 

  73. Pearson RG (2001) Dowden. Hutchison & Ross, Stroudsburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Shahabi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 673 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabi, M., Raissi, H. & Mollania, F. Electronic structures, intramolecular hydrogen bond interaction, and aromaticity of substituted 4-amino-3-penten-2-one in ground and electronic excited state. Struct Chem 26, 491–506 (2015). https://doi.org/10.1007/s11224-014-0505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0505-4

Keywords

Navigation