Skip to main content
Log in

Improved method for prediction of density of energetic compounds using their molecular structure

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Accurate prediction of detonation pressure and velocity of an energetic compound through computer codes and empirical methods requires reliable value of its crystal density. This paper introduces a reliable method to estimate crystal density of a wide range of different types of energetic compounds. This method can applied for any energetic compounds containing at least –NO2, –NNO2, –ONO2, and furazan ring. It is based on some specific molecular fragments of energetic compounds. For 172 different energetic compounds, the root mean squares (rms) percent errors of the new correlation and one of the best available new group additivity methods are 2.16 and 11.0, respectively. The present method also provides more reliable predictions for new explosives such as N,N′-bis(1,2,4-triazol-3-yl)-4,4′-diamino-2,2′,3,3′,5,5′,6,6′-octanitroazobenzene and 2,4,6-tris(3′,5′-diamino-2′,4′,6′-trinitrophenylamino)-1,3,5-triazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mader CL (2007) Numerical modeling of explosives and propellants, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Sikder AK, Maddala G, Agrawal JP, Singh H (2001) J Hazard Mater A 84:1–26

    Article  CAS  Google Scholar 

  3. Agrawal JP (2010) High energy materials: Propellants, Explosives and Pyrotechnics. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  4. Muthurajan H, Sivabalan R, Pon Saravanan N, Talawar MB (2009) J Hazard Mater 161:714–717

    Article  CAS  Google Scholar 

  5. Keshavarz MH (2011) J Hazard Mater 190:330–344

    Article  CAS  Google Scholar 

  6. Mosaei Oskoei Y, Keshavarz MH (2012) Fluid Phase Equilibr 36:1–14

    Article  Google Scholar 

  7. Keshavarz MH (2012) Propellants Explos Pyrotech 37:489–497

    Article  CAS  Google Scholar 

  8. Ghule VD, Srinivas D, Radhakrishnan S, Jadhav PM, Tewari SP (2012) Struct Chem 23:749–754

    Article  CAS  Google Scholar 

  9. Nithya R, Sowmiya M, Kolandaivel P, Senthilkumar K (2014) Struct Chem 25:715–731

    Article  CAS  Google Scholar 

  10. Rocha IM, Galvão TLP, Ribeiro da Silva MDMC, Ribeiro da Silva MAV (2013) Struct Chem 24:1935–1944

    Article  CAS  Google Scholar 

  11. Fried LE, Howard WM, Souers PC (1998) CHEETAH 2.0 user’s manual. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  12. Keshavarz MH (2011) In: Janssen TJ (ed) Explosive materials: classification, composition and properties. Nova Science Publishers, Inc., New York

    Google Scholar 

  13. Keshavarz MH (2011) In: Brar SK (ed) Hazardous materials: types, risks and control. Nova Science Publishers, Inc., New York

    Google Scholar 

  14. Keshavarz MH (2009) J Hazard Mater 165:579–588

    Article  CAS  Google Scholar 

  15. Keshavarz MH, Pouretedal HR (2009) J Hazard Mater 169:158–169

    Article  CAS  Google Scholar 

  16. Rice BM, Sorescu DC (2004) J Phys Chem B 108:17730–17739

    Article  CAS  Google Scholar 

  17. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2007) J Hazard Mater 141:280–288

    Article  CAS  Google Scholar 

  18. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874–10879

    Article  CAS  Google Scholar 

  19. Kim CK, Cho SG, Kim CK, Park H, Zhang H, Lee HW (2008) J Comput Chem 29:1818–1824

  20. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe´ A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  21. Willer RL (2009) J Mex Chem Soc 53:108–119

    CAS  Google Scholar 

  22. Ammon HL (2008) Propellants Explos Pyrotech 33:92–102

    Article  CAS  Google Scholar 

  23. Keshavarz MH (2007) J Hazard Mater 143:437–442

    Article  CAS  Google Scholar 

  24. Keshavarz MH (2007) J Hazard Mater 145:263–269

    Article  CAS  Google Scholar 

  25. Palmiii WJ (2005) Introduction to Matlab for engineers. McGraw-Hill, New York

    Google Scholar 

  26. Keshavarz MH, Esmail-poor K, Kavosh Tehrani K (2010) Propellants Explos Pyrotech 35:482–486

    Article  CAS  Google Scholar 

  27. Tarver CM (1979) J Chem Eng Data 24:136–145

    Article  CAS  Google Scholar 

  28. Meyer R, Köhler J, Homburg A (2002) Explosives, 5th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  29. Pagoria PF, Lee JS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  30. Sikder AK, Sikder N (2004) J Hazard Mater A 112:1–15

    Article  CAS  Google Scholar 

  31. Agrawal JP, Hudgson RD (2007) Organic chemistry of explosives. Wiley Ltd, West Sussen

    Google Scholar 

  32. Agrawal JP (1998) Prog Energy Combust Sci 24:1–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, M.H., Soury, H., Motamedoshariati, H. et al. Improved method for prediction of density of energetic compounds using their molecular structure. Struct Chem 26, 455–466 (2015). https://doi.org/10.1007/s11224-014-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0502-7

Keywords

Navigation