Skip to main content
Log in

Calculation of the γ-TiAl Lattice Resistance

  • Published:
Strength of Materials Aims and scope

The dislocation width and lattice resistance (Peierls stress) of a γ-TiAl alloy are calculated by the density ratio method. The lattice resistance is shown to decrease with the dislocation width. The relationship between the Peierls stress and dislocation width variation is defined by theoretical derivation. The yield stress is negatively correlated with the shear stress of the material. It can become a useful tool for choosing an appropriate shear stress under deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Z. Wu, R. Hu, T. Zhang, et al., “Microstructure determined fracture behavior of a high Nb containing TiAl alloy,” Mater. Sci. Eng. A, 666, 297–304 (2016).

    Article  Google Scholar 

  2. H. Clemens and S. Mayer, “Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys,” Adv. Eng. Mater., 15, No. 4, 191–215 (2013).

    Article  Google Scholar 

  3. R. C. Feng, Z. Y. Rui, G. T. Zhang, “Improved method of fatigue life assessment for TiAl alloys,” Strength Mater., 46, No. 2, 183–189 (2014).

    Article  Google Scholar 

  4. M. Terner, S. Biamino, D. Ugues, et al., “Phase transitions assessment on γ-TiAl by Thermo Mechanical Analysis,” Intermetallics, 37, 7–10 (2013).

    Article  Google Scholar 

  5. Y. Ma, D. Cuiuri, N. Hoye, et al. “The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding,” Mater. Sci. Eng. A, 631, 230–240 (2015).

    Article  Google Scholar 

  6. S. Tian, X. Lv, H. Yu, et al.,“Creep behavior and deformation feature of TiAl–Nb alloy with various states at high temperature,” Mater. Sci. Eng. A, 651, 490–498 (2016).

    Article  Google Scholar 

  7. M. Kanani, A. Hartmaier, and R. Janisch, “Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys,” Acta Mater., 106, 208–218 (2016).

    Article  Google Scholar 

  8. J. L. Su and X. F. Lian, “Relationship between intrinsic characteristic sizes of elastic property and plastic property of γ-TiAl based alloy,” Chinese J. Nonferr. Metal., 25, No. 2, 338–343 (2015).

    Google Scholar 

  9. J. C. Schuster and M. Palm, “Reassessment of the binary Aluminum-Titanium phase diagram,” J. Phase Equilib. Diff., 27, No. 3, 255–277 (2006).

    Article  Google Scholar 

  10. E. Oren, E. Yahel, and G. Makov, “Dislocation kinematics: a molecular dynamics study in Cu,” Model. Simul. Mater. Sc., 25, No. 2, 025002 (2017).

    Article  Google Scholar 

  11. Z. Li, N. Mathew, and R. C. Picu, “Dependence of Peierls stress on lattice strains in silicon,” Comp. Mater. Sci., 77, 343–347 (2013).

    Article  Google Scholar 

  12. G. Liu, X. Cheng, J. Wang, et al., “Improvement of nonlocal Peierls–Nabarro models,” Comp. Mater. Sci., 131, 69–77 (2017).

    Article  Google Scholar 

  13. G. T. Zhang, Z. Y. Rui, R. C. Feng, et al., “Illustration of fracture mechanism in high temperature for TiAl alloys,” Appl. Mech. Mater., 457–458, 19–22 (2014).

    Article  Google Scholar 

  14. L. Wang, “Calculation of the interplanar spacing of cubic crystal lattice,” J. Yunnan Nat. Univ., 24, No. 4, 346–348 (2015).

    Google Scholar 

  15. R. C. Feng, J. T. Lu, H. Y. Li, et al., “Effect of the microcrack inclination angle on crack propagation behavior of TiAl alloy,” Strength Mater., 49, No. 1, 75–82 (2017).

    Article  Google Scholar 

  16. D. Hull and D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann (2011).

  17. R. E. Schafrik, “Dynamic elastic moduli of the titanium aluminides,” Metall. Trans. A, 8, No. 6, 1003–1006 (1977).

    Article  Google Scholar 

  18. K. Tanaka, K. Okamoto, H. Inui, et al., “Elastic constants and their temperature dependence for the intermetallic compound Ti3Al,” Philos. Mag. A, 73, No. 5, 1475–1488 (1996).

    Article  Google Scholar 

  19. D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, Springer, Dordrecht (1998).

    Google Scholar 

  20. H.-D. Dietze, “Die Temperaturabhängigkeit der Versetzungsstruktur,” Z. Phys., 132, No. 1, 107–110 (1952).

    Article  Google Scholar 

  21. J. N. Wang, “Prediction of Peierls stresses for different crystals,” Mater. Sci. Eng. A, 206, No. 2, 259–269 (1996).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation of China (No. 51665030) and the Program for ChangJiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_15R30) and Doctoral research Foundation of Lanzhou University of Technology. The authors wish to thank Engineering Research center of Nonferrous Metallurgy’s New Equipment, Ministry of Education, Lanzhou University of technology for providing help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Li.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 65 – 71, January – February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R.C., Li, L.L., Li, H.Y. et al. Calculation of the γ-TiAl Lattice Resistance. Strength Mater 51, 56–61 (2019). https://doi.org/10.1007/s11223-019-00049-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-019-00049-w

Keywords

Navigation