Skip to main content
Log in

Thermomechanical Coupling Model for a Stainless Steel-Clad Plate on Heat Treatment

  • Published:
Strength of Materials Aims and scope

Quick and correct prediction of the internal stress and deformation of stainless steel-clad plates on heat treatment is a problem of specific interest. A thermomechanical coupling model based on the engineering elastic-plastic theory is detailed. The discretization method and difference equations used simultaneously provide effective numerical calculations for the model. The generalized finite element model verifies relevant simplification conditions and efficiency of the numerical calculation logic. Heat treatment experiments of clad plates are also designed and presented, and the ability of the model to predict the stress and deformation behavior of the clad plate in the actual heat treatment process is evaluated. The calculation logic of the model is reasonable, and the prediction error of deformation and internal stress of the plate is ~15%. The model exhibits an extremely high computational efficiency and can meet the requirements of on-line analysis for heat treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. Y. Jing, Y. Qin, X. Zang, and Y. Li, “The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere,” J. Mater. Process. Tech., 214, No. 8, 1686–1695 (2014).

    Article  CAS  Google Scholar 

  2. L. Li, F. X. Yin, and K. Nagai, “Progress of laminated materials and clad steels production,” Mater. Sci. Forum, 675–677, 439–447 (2011).

    Article  CAS  Google Scholar 

  3. L. Li, K. Nagai, F. Yin, “Progress in cold roll bonding of metals,” Sci. Technol. Adv. Mater., 9, No. 2, 023001 (2008), doi: https://doi.org/10.1088/1468-6996/9/2/023001.

    Article  CAS  Google Scholar 

  4. M. Yang, X. Zuo, M. Zhao, and J. Wang, “Research Progress of manufacturing technology for stainless steel clad plate,” Hot Work. Technol., No. 20, 93–96 (2012).

    Google Scholar 

  5. H. Liu, X. Zhang, and L. Li, “Effects of heat treatment on microstructure and properties of hot rolled stainless steel clad plate,” Trans. Mater. Heat Treat., 38, No. 6, 67–70 (2013).

    CAS  Google Scholar 

  6. G. Xie, Z. Luo, G. Wang, et al., “Interface characteristic and properties of stainless steel/HSLA steel clad plate by vacuum rolling cladding,” Mater. Trans., 52, No. 8, 1709–1712 (2011).

    Article  CAS  Google Scholar 

  7. I. Hordych, D. Rodman, F. Nürnberger, et al., “Effect of pre-rolling heat treatments on the bond strength of cladded galvanized steels in a cold roll bonding process,” Steel Res. Int., 87, No. 12, 1619–1626 (2016).

    Article  CAS  Google Scholar 

  8. N. V. Rao, D. S. Sarma, S. Nagarjuna, and G. M. Reddy, “Influence of hot rolling and heat treatment on structure and properties of HSLA steel explosively clad with austenitic stainless steel,” Mater. Sci. Technol., 25, No. 11, 1387–1396 (2009).

    Article  CAS  Google Scholar 

  9. H. Jiang, X. Yan, J. Liu, and X. Duan, “Effect of heat treatment on microstructure and mechanical property of Ti–steel explosive-rolling clad plate,” T. Nonferr. Metal. Soc., 24, No. 3, 697–704 (2014).

    Article  CAS  Google Scholar 

  10. M. Yazdani, M. R. Toroghinejad, and S. M. Hashemi, “Effects of heat treatment on interface microstructure and mechanical properties of explosively welded Ck60/St37 plates,” J. Mater. Eng. Perform., 25, No. 12, 5330–5342 (2016).

    Article  CAS  Google Scholar 

  11. Y. Trykov, L. Gurevich, D. Pronichev, and M. Trunov, “Influence of strain-hardened zones and intermetallic layers of explosion welded and heat treated Al/Cu laminated metal composites on the evolution of thermal conductivity coefficient,” Mater. Sci., 20, No. 3, 267–270 (2014).

    Google Scholar 

  12. H. J. Li, L. G. Li, Y. L. Li, and G. D. Wang, “Online monitor and control of cooling temperature on run-out table of hot strip mill,” Steel Res. Int., 86, No. 11, 1225–1233 (2015).

    Article  CAS  Google Scholar 

  13. Y. Lee, S. Choi, and P. D. Hodgson, “Integrated model for thermo-mechanical controlled process in rod (or bar) rolling,” J. Mater. Process. Tech., 125–126, 678–688 (2002).

    Article  Google Scholar 

  14. A. K. Singh and D. Mazumdar, “Comparison of several numerical prediction methods for thermal fields during phase transformation of plain carbon steels,” ISIJ Int., 31, No. 12, 1441–1444 (1991).

    Article  CAS  Google Scholar 

  15. A. Mukhopadhyay and S. Sikdar, “Implementation of an on-line run-out table model in a hot strip mill,” J. Mater. Process. Tech., 169, No. 2, 164–172 (2005).

    Article  CAS  Google Scholar 

  16. A. Saboonchi and S. Hassanpour, “Simulation-based prediction of hot-rolled coil forced cooling,” Appl. Therm. Eng., 28, No. 13, 1630–1637 (2008).

    Article  CAS  Google Scholar 

  17. N. Mansouri, M. Mirhosseini, and A. Saboonchi, “Thermal modeling of strip across the transfer table in the hot rolling process,” Appl. Therm. Eng., 38, 91–104 (2012).

    Article  Google Scholar 

  18. X. Chen, G. Wang, Y. Tian, et al., “An on-line finite element temperature field model for plate ultra fast cooling process,” J. Iron Steel Res. Int., 21, No. 5, 481–487 (2014).

    Article  CAS  Google Scholar 

  19. G. Sun, H. N. Han, J. K. Lee, et al., “A finite element model for the prediction of thermal and metallurgical behavior of strip on run-out-table in hot rolling,” ISIJ Int., 42, No. 4, 392–400 (2002).

    Article  CAS  Google Scholar 

  20. A. Milenin, R. Kuziak, M. Lech-Grega, et al., “Numerical modeling and experimental identification of residual stresses in hot-rolled strips,” Arch. Civ. Mech. Eng., 16, No. 1, 125–134 (2016).

    Article  Google Scholar 

  21. H. H. Cho, Y. G. Cho, D. W. Kim, et al., “Finite element investigation for edge wave prediction in hot rolled steel during run out table cooling,” ISIJ Int., 54, No. 7, 1646–1652 (2014).

    Article  CAS  Google Scholar 

  22. X. Wang, F. Li, Q. Yang, and A. He, “FEM analysis for residual stress prediction in hot rolled steel strip during the run-out table cooling,” Appl. Math. Model., 37, No. 1, 586–609 (2013).

    Article  Google Scholar 

  23. Y. Lu and L. Cheng, Theory and Analysis of Heat Transfer, Science Press (1997).

  24. Y. Y. Zhang, Z. W. Zhao, Q. Hu, et al., “Establishing and verifying mathematical models of inverse heat conduction problem during aerosol cooling process of the continuous casting,” Comput. Simul., 32, No. 1, 270–273 (2015).

    Google Scholar 

  25. A. M. Nawwar, K. McLachlan, and J. Shewchuk, “A modified hole-drilling technique for determining residual stresses in thin plates,” Exp. Mech., 16, No. 6, 226–232 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Guan.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 48 – 64, January – February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, B., Zang, Y., Yang, F. et al. Thermomechanical Coupling Model for a Stainless Steel-Clad Plate on Heat Treatment. Strength Mater 51, 40–55 (2019). https://doi.org/10.1007/s11223-019-00048-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-019-00048-x

Keywords

Navigation